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Abstract—In this paper, a method and algorithm for solving the
non-stationary problem of optimal placement of heat sources of
minimum power in the space have been developed. As a result, the
temperature in the space is within the specified limits and the value
of the functional is minimized. The mathematical model of the pro-
cess is described by the heat conduction equation with a variable
coefficient. The numerical model of the problem is constructed us-
ing implicit conservative difference schemes. To solve the problem
of thermal conductivity control, a linear programming problem was
used. Software for numerical modeling has been developed. The
results of a computational experiment are presented.
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I INTRODUCTION

One of the most common objects in various fields of hu-
man activity is the system of heat sources, the heat balance
in heated rooms. Mathematical modeling of such systems
poses the problem of optimal placement of heat sources in
heated rooms, which is associated with resource-saving en-
gineering technologies. The task of optimal placement of
heat sources in heated areas has always been relevant in de-
sign work in construction, greenhouses and other technical
and technological areas.

The heat transfer process can be controlled in different
ways. The process is often controlled by the placement
of heat sources or changes in ambient temperature. The
problems of controlling the process of heat propagation un-
der various conditions were studied by A.G.Butkovsky [1],
J.L.Lions [2], Yu.V.Egorov [3], A.I.Egorov [4], as well as
by other authors, and important results were obtained. Their
work forms the basis of this work. In the work [5] the prob-
lem of optimal control of processes described by the heat
equation was studied. The control parameter is set in the
boundary condition and has reached the minimum of the

functional given by the integral quadratic expression. A
method for finding an admissible control that gives a mini-
mum to the functional is shown. In the paper [6] the third
boundary value problem of parabolic type was considered.
The right side of the boundary condition contains controls in
additive form. The problem of transferring an object from the
initial state to the zero state in a conflict situation is solved.

In the work [7], the differential-difference problem of con-
trolling the diffusion process was studied, an analogue of the
maximum principle was obtained, which makes it possible to
determine the moments of switching on and off the source of
maximum power. The paper [8] proposes a solution to the
problem of optimal placement of sources in inhomogeneous
media, in which scalar stationary fields are described by el-
liptic equations. The algorithms for solving the problem are
based on methods for estimating the values of the functional
on the set of possible locations of sources, which makes it
possible to choose the optimal variant by implementing the
branch and bound method. The paper [9] considers the prob-
lem of optimizing the density of heat sources in stationary
processes described by elliptic equations given by the third
boundary condition. In the work [10], the minimax prob-
lem of the optimal placement of sources in the processes
of heat propagation described by equations of elliptic type
was numerically solved. To find the extremum of the objec-
tive function depending on the location of the sources of the
physical field, the minimax method of mathematical model-
ing was used. The proposed approach made it possible to
find a numerical solution to the boundary value problem in
terms of the source carrier placement parameters. In works
[11, 12, 13], a method for the numerical solution of the non-
stationary problem of optimal placement of heat sources with
a minimum power in processes described by parabolic type
equations is proposed. An algorithm and a set of programs
for the numerical solution of non-stationary problems of op-
timal control of the location of heat sources and visualization

Acta of Turin Polytechnic University in Tashkent, 2022, 31, 14-18



CONSERVATIVE DIFFERENCE SCHEMES FOR OPTIMAL PLACEMENT OF HEAT SOURCES IN A PARALLELEPIPED 2

of the results obtained have been developed.
In the work [14], the problems of optimal space heating

based on the Pontryagin maximum principle are considered.
The paper [15] considers the problem of energy-efficient heat
supply of a building in a central heating system.

In this paper, we consider the problem of heat conduction
control based on the optimization of a linear objective func-
tional, taking into account constraints, which is solved on the
basis of approximation and reduction to a linear program-
ming problem. The paper proposes a technique and algo-
rithm for solving the non-stationary problem of maintaining
the temperature inside the region within the given limits, by
optimally placing heat sources in a parallelepiped. Software
was developed for carrying out computational experiments.

II STATEMENT OF THE PROBLEM AND ITS
CONSERVATIVE APPROXIMATION

In the domain D = {a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, 0 ≤
t ≤ T}, it is required to find a function f (x,y,z, t) ≥ 0 such
that for any t the linear functional

J{ f}=
b∫

a

d∫
c

q∫
p

f (x,y,z, t)dzdydx →min, (1)

reaches a minimum and satisfies the following conditions:
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+

∂
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f , x ∈ (a,b), y ∈ (c,d), z ∈ (p,q), t ∈ (0,T ],
u(x,y,z,0) = u0(x,y,z),

u(a,y,z, t) = µ1(y,z, t), u(b,y,z, t) = µ2(y,z, t),
u(x,c,z, t) = µ3(x,z, t), u(x,d,z, t) = µ4(x,z, t),
u(x,y, p, t) = µ5(x,y, t), u(x,y,q, t) = µ6(x,y, t),

(2)

m(x,y,z, t)≤ u(x,y,z, t)≤ M(x,y,z, t), (x,y,z, t) ∈ D, (3)

where u = u(x,y,z, t) is the temperature at the point (x,y,z)
of the parallelepiped at time t; χ = χ(x,y,z) is the ther-
mal conductivity coefficient; u0(x,y,z), µ1(y,z, t), µ2(y,z, t),
µ3(x,z, t), µ4(x,z, t), µ5(x,y, t), µ6(x,y, t), m(x,y,z, t),
M(x,y,z, t) are given functions. The functions m(x,y,z, t) and
M(x,y,z, t) are the minimum and maximum temperatures de-
fined in the domain D. f = f (x,y,z, t) is the heat source de-
fined in the space L2(D).

Let Lu=
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− ∂
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)
. The operator L defined in L2(D) has an

inverse L−1. Here L−1 is an integral operator with a con-
tinuous kernel (Green’s function). Using it, we can write

problem (1)-(3) in the following form:

m(x,y,z, t)≤ (L−1 f )(x,y,z, t)≤ M(x,y,z, t),
f (·, ·, ·, ·) ∈ L2(D), f (x,y,z, t)≥ 0. (4)

We will solve this problem in a complete mathematical
formulation by the integro-interpolation method on a uni-
form grid.

Introduce in D a difference grid uniform in four variables
ω

τ
h1h2h3

=ωh1 × ωh2 × ωh3 × ω
τ ={(xi,y j,zk, ts): xi = ih1,

y j = jh2, zk = kh3, ts = sτ , i = 0,N1, j = 0,N2, k = 0,N3,
s= 0,N4} with steps h1 = (b−a)/N1, h2 = (d−c)/N2, h3 =
(q− p)/N3, τ = T/N4.

To obtain conservative difference schemes, we use the
integro-interpolation method. To obtain a difference equa-
tion, we write an integral heat balance equation on a paral-
lelepiped xi−1/2 ≤ x ≤ xi+1/2, y j−1/2 ≤ y ≤ y j+1/2, zk−1/2 ≤
z ≤ zk+1/2 for time ts ≤ t ≤ ts+1 [16]:

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

(u(x,y,z, ts+1)−u(x,y,z, ts))dzdydx =

ts+1∫
ts

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

(W (xi−1/2,y,z, t)−W (xi+1/2,y,z, t))dzdydt+

ts+1∫
ts

xi+1/2∫
xi−1/2

zk+1/2∫
zk−1/2

(W (x,y j−1/2,z, t)−W (x,y j+1/2,z, t))dzdxdt+

ts+1∫
ts

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

(W (x,y,zk−1/2, t)−W (x,y,zk+1/2, t))dydxdt+

ts+1∫
ts

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

f (x,y,z, t)dzdydxdt.

Here W (x,y,z, t) is the heat flux, W (x,y,z, t) =
−χ(x,y,z)gradu.

We approximate the integrals included in the balance
equation by approximate formulas

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

u(x,y,z, ts+1)dzdydx ≈ h1h2h3us+1
i jk ,

ts+1∫
ts

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

W (xi−1/2,y,z, t)dzdydt ≈ τh2h3W s+1
i−1/2 jk,

ts+1∫
ts

xi+1/2∫
xi−1/2

zk+1/2∫
zk−1/2

W (x,y j−1/2,z, t)dzdxdt ≈ τh1h3W s+1
i j−1/2k,

Acta of Turin Polytechnic University in Tashkent, 2022, 31, 14-18



CONSERVATIVE DIFFERENCE SCHEMES FOR OPTIMAL PLACEMENT OF HEAT SOURCES IN A PARALLELEPIPED 3

ts+1∫
ts

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

W (x,y,zk−1/2, t)dydxdt ≈ τh1h2W s+1
i jk−1/2,

ts+1∫
ts

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

zk+1/2∫
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f (x,y,z, t)dzdydxdt ≈ τh1h2h3 f s+1
i jk ,

W s+1
i−1/2 jk =−χi−1/2 jk
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,
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.

In this case, χi−1/2 jk, χi j−1/2k, χi jk−1/2 and f s+1
i jk are defined

by the equalities

χi−1/2 jk = χ

(
xi + xi−1

2
,y j,zk

)
,

χi j−1/2k = χ

(
xi,

y j + y j−1

2
,zk

)
,

χi jk−1/2 = χ

(
xi,y j,

zk + zk−1

2

)
,

χi jk = χ(xi,y j,zk), f s+1
i jk = f (xi,y j,zk, ts+1).

The implicit conservative difference scheme for problem
(2) has the form:
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]
+ f s+1

i jk , i = 1,N1 −1,

j = 1,N2 −1, k = 1,N3 −1, s = 0,N4 −1,
u0

i jk = u0(xi,y j,zk),

us+1
0 jk = µ1(y j,zk, ts+1), us+1

N1 jk = µ2(y j,zk, ts+1),

us+1
i0k = µ3(xi,zk, ts+1), us+1

iN2k = µ4(xi,zk, ts+1),

us+1
i j0 = µ5(xi,y j, ts+1), us+1

i jN3
= µ6(xi,y j, ts+1),

i = 0,N1, j = 0,N2, k = 0,N3, s = 0,N4 −1.

(5)

Let us introduce the notation

XY Z =

(
1
τ
+

χi±1/2 jk

h2
1

+
χi j±1/2k

h2
2

+
χi jk±1/2

h2
3

)
,

X+ =−
χi+1/2 jk

h2
1

, X− =−
χi−1/2 jk

h2
1

, Y+ =−
χi j+1/2k

h2
2

,

Y− =−
χi j−1/2k

h2
2

, Z+ =−
χi jk+1/2

h2
3

, Z− =−
χi jk−1/2

h2
3

.

Consider the matrix

A =



XY Z Z+ 0 ... 0 Y+ 0 ... 0 X+ 0 ... ... 0

Z− XY Z Z+ 0 ... 0 Y+ 0 ... 0 X+ 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 ... 0 X− 0 ... 0 Y− 0 ... 0 Z− XY Z Z+

0 ... ... 0 X− 0 ... 0 Y− 0 ... 0 Z− XY Z


.

We get
G = A−1.

We approximate problem (1)-(5) in the form of a lin-
ear programming problem. We divide the region D by
x,y,z, t into N1, N2, N3, N4 equal parts, respectively: D =
N4⋃

s=1

N1⋃
i=1

N2⋃
j=1

N3⋃
k=1

Ds
i jk, where Ds

i jk = {(x,y,z, t), xi−1 ≤ x ≤ xi,

y j−1 ≤ y ≤ y j, zk−1 ≤ z ≤ zk, ts−1 ≤ t ≤ ts}, i = 1,N1,
j = 1,N2, k = 1,N3, s = 1,N4. In the space L2(D), the
functions f (x,y,z, t) = f s

i jk, (x,y,z, t) ∈ Ds
i jk (i = 1,N1 −1,

j = 1,N2 −1, k = 1,N3 −1, s = 1,N4) are defined as piece-
wise constant functions. From here we get f (x,y,z, t) ≈
N4

∑
s=1

N1−1

∑
i=1

N2−1

∑
j=1

N3−1

∑
k=1

f s
i jk.

Let grw = G, ms
i jk = m(xi,y j,zk, ts), Ms

i jk = M(xi,y j,zk, ts),
f̃ s
w = f s

i jk, r = w, w = (i−1)(N2 −1)(N3 −1)+( j−1)(N3 −
1)+k, N = (N1−1)(N2−1)(N3−1), r = 1,N, i = 1,N1 −1,
j = 1,N2 −1, k = 1,N3 −1, s = 1,N4. We substitute the ex-
pression f (x,y,z, t) into (1) and replace inequality (4) with
grid functions.

After that, we get the following linear programming prob-
lem:

Js{ f}=
N1−1

∑
i=1

N2−1

∑
j=1

N3−1

∑
k=1

(mesDs
i jk) f s

i jk → min,

ms
i jk ≤

N

∑
w=1

grw f̃ s
w ≤ Ms

i jk, r = 1,2, ...,N,

i = 1,N1 −1, j = 1,N2 −1, k = 1,N3 −1, s = 1,N4,
f̃ s
w ≥ 0, w = 1,2, ...,N, s = 1,2, ...,N4.

(6)

Problem (6) is solved by the big M method [17, 18]. The
numerical solution of problem (2) is found using us

i jk =
N

∑
w=1

grw f̃ s
w. The found f̃ s

w is a function that gives a minimum

to the functional (1).
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III DESCRIPTION OF THE ALGORITHM AND MODELING
RESULTS

For an approximate solution of problem (1)-(6), software
in the C# language has been developed. It allows you to rep-
resent all the necessary input data: constants, coefficients,
grid parameters, as well as temperature functions, initial and
boundary conditions, in the form of scripts. Graphical mod-
ules have been developed to present the results.

The flowchart (Fig. 1) shows a general algorithm for the
numerical solution of the non-stationary problem of control-
ling the optimal location of heat sources.

Fig. 1: Flowchart of the general algorithm for solving the problem

Computational experiment. Find the optimal location of
heat sources with the minimum power cubed. The problem
was solved with the following values of input parameters:
x,y,z ∈ [0,1], thermal diffusivity χ(x,y,z) = x2y2z2 m2/s, the
initial and boundary conditions are determined by the func-
tions: u0(x,y,z) = 2+ x2 + y2 + z2 m/s, µ1(y,z, t) = 2+ y2 +
z2+ t2 m/s, µ2(y,z, t) = 3+y2+z2+ t2 m/s, µ3(x,z, t) = 2+
x2+z2+t2 m/s, µ4(x,z, t)= 3+x2+z2+t2 m/s, µ5(x,y, t)=
2+ x2 + y2 + t2 m/s, µ6(x,y, t) = 3+ x2 + y2 + t2 m/s, the
minimum and maximum temperatures are given by the func-
tions m(x,y,z, t) = 1 + x2 + y2 + z2 + t2 K, M(x,y,z, t) =
4+ x2 + y2 + z2 + t2 K, end of time T = 1. Computational
grid with the number of sources (N1 − 1)×(N2 − 1)×(N3 −

1)×N4 = 6×6×6×7. The minimum value of the functional
in the numerical solution is Jmin = 14.35 K·m/s. On fig. 2
presents the results of the numerical solution of problem (6).
Results are shown with minimum (borders in blue, below),
maximum (borders in red, above), and approximate (green,
middle) temperature values. On fig. 3 shows the optimal lo-
cation of heat sources with a minimum power in the form of
a bar graph.

Fig. 2: Graph of the solution of problem (6) at x = 0.5, t = T

Fig. 3: Optimal placement of heat sources f (x,y,z, t) at x = 0.5,
t = T
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IV CONCLUSION

As you know, the construction of the Green’s function for
problems in partial derivatives, in fact, means finding a solu-
tion in an explicit form. When applying numerical methods,
the values of the Green’s function are presented in the form of
a matrix, which is inverse to the matrix composed of the co-
efficients of the system of linear algebraic equations. Thus,
it is possible to indicate the values of the desired function
at the nodal points of the partition. After substituting these
values for the conditions-restrictions of body temperature,
taking into account finding the extremum of the functional,
a linear programming problem is obtained, for the solution
of which the standard algorithm big M method is used. A
technique and algorithm for solving the non-stationary prob-
lem of ensuring the temperature inside the region within the
given limits by optimal placement of heat sources in a par-
allelepiped are proposed. The results of this computational
experiment show that the functional reaches its minimum.
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