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Abstract—In this paper, we study the problem of ensuring the tem-
perature inside the field within the specified limits by choosing the
optimal location of the heat sources in the parallelepiped. In this
case, the optimal placement of heat sources on the area should be
such that the total power of the consumed heat sources is minimal,
so that the temperature is within the specified limits. By approxi-
mating the original problem, we obtain a difference equation. The
construction of implicit difference schemes for the heat equation is
given. From the difference equation it is reduced to a system of
linear algebraic equations. The problem was solved using the M-
method. In the parallelepiped, a new approach is proposed based
on the numerical solution of the non-stationary problem of the opti-
mal choice of the location of heat sources. Algorithms and software
were developed for the numerical solution of the problem. A brief
description of the software is provided. The results of a computa-
tional experiment are visualized.

Keywords— non-stationary problems, density, optimal choice,
heat sources, implicit schemes, finite-dimensional approximation.

I INTRODUCTION

Many applied problems of modern natural science, in par-
ticular, the control of heat propagation in an environment,
the mathematical model of which is the partial differential
equation, lead to the choice of the location of heat sources
in order to minimize the energy-dissipated amount of heat.
In the process of mathematical modeling of systems related
to resource-saving engineering technologies, the problem of
optimal allocation of resources in heated rooms arises. The
variety of optimization criteria allows setting a number of
tasks. In fact, there are a number of problems here, which
differ in the formulation of the problem and methods of so-
lution. The problem of optimal placement of heat sources in

heated rooms has always been relevant in construction, met-
allurgy, greenhouse design and various other areas of tech-
nology and technology. The problem of optimal placement
of heat sources in heated rooms is also included in the general
problem of this kind of applied problems. In this paper, we
consider the problem of ensuring the temperature inside the
region within the specified limits due to the optimal place-
ment of heat sources of minimum power.

One of the distinctive features of this work is that a non-
stationary problem is considered, i.e. the change in tempera-
ture depends not only on spatial variables, but also on time.
It should be noted that in this case, a separate problem of
optimization of a linear functional at each layer in time is
considered.

One of the types of objects that are widespread in vari-
ous fields of human activity are heat sources at the border,
providing heat in a state of non-stationary heat balance with
the environment. It is clear that the temperature inside the
body depends on the temperature of the heating medium lo-
cated at the border of the region. In a typical formulation,
the problem of the optimal choice of the power of the heat-
ing medium is that the temperature field generated by them
inside the body is in the given corridor. Similar problems
arise in the organization of heating residential and indus-
trial premises, greenhouses and, if necessary, to maintain
a given temperature regime in homogeneous and inhomo-
geneous solids [1]. They allow a number of settings that
are not equivalent due to differences in optimization crite-
ria. Here we consider the problem of finding the density of
heat sources of minimum power, which provides a given tem-
perature regime in a certain body under the conditions of its
non-stationary heat balance with the environment. Possible
formulations and ways of solving the stationary problem are
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discussed in [2]. In the paper [3], a solution to the problem
of optimal placement of sources in inhomogeneous media
is proposed, in which scalar stationary fields are described
by elliptic equations. The algorithms for solving the prob-
lem are based on effective methods of evaluating the values
of the functional for a set of possible locations of sources,
which makes it possible to choose the optimal option by im-
plementing the branch and bound method in each specific
case. In the work [4], the problems of optimal heating of a
room based on the Pontryagin maximum principle are con-
sidered. The methodology for calculating the optimal con-
trol of transient modes during heating of the room is pre-
sented. The work [5] is devoted to the explicit formulation
of the mathematical problem of optimization of heat supply
in terms of its energy efficiency and the search for its solu-
tions. In the work [6], a differential-difference problem of
control of the diffusion process is studied, an analogue of the
maximum principle is obtained, which makes it possible to
determine such moments of switching on and off the maxi-
mum power of the source at which an admissible level of its
concentration is established inside the parallelepiped at the
observed concentration level of this substance at the bound-
ary of the parallelepiped. [7] proposes a different solution
concept.

This concept, in contrast to the classical one, allows points
of discontinuity of the derivative with respect to the coordi-
nate and, in contrast to the generalized solution, allows one to
determine the derivative at the end points. Here, the inverse
boundary value problem of thermal conductivity is posed and
solved, provided that the thermal conductivity coefficient is
piecewise constant. The problem was investigated using the
Fourier series in eigenfunctions for an equation with a dis-
continuous coefficient. To solve the inverse problem, the
Fourier transform was used, which allows the inverse prob-
lem to be reduced to an operator equation, which was solved
by the residual method. In the works [8, 9], a method and
an algorithm for solving the non-stationary problem of the
optimal choice of the density of heat sources on simple ge-
ometric regions is developed so that the temperature inside
the region under consideration is within the specified limits.
In this case, the heat sources must provide a given temper-
ature regime of the minimum total power and temperature
in a given corridor filled with a homogeneous or inhomoge-
neous medium. In these works, to solve the problem, finite-
dimensional approximations of the original problem are con-
structed in the form of a linear programming problem and
the results of numerical experiments are presented. From a
mathematical point of view, this problem belongs to the op-
timal control problems [10] for elliptic boundary value prob-
lems. The existence of a solution and general properties of
similar problems for quadratic objective functionals, as well

as approximate methods for their solution, have been studied
by a number of authors [11, 12, 13]. Our problem can also
be attributed to inverse heat conduction problems, methods
of approximate solution of which are considered in [14]. In
the paper [15], the third boundary value problem of parabolic
type is considered. The distribution of heat in the body under
consideration is controlled by a function that is located on
the boundary of the body, the problem is solved, in the event
of a conflict, about the possibility of transferring the initial
position of the body to the desired state. Here we are talking
mainly about the quadratic objective functional. In this work,
the target functional is linear. Difficulties in solving the prob-
lem are generated by the inequalities included in the formu-
lation that describe a given temperature regime. In addition,
the absence of coercivity in a linear functional leads to diffi-
culties in establishing the existence of a solution to the prob-
lem. We modify the problem formulation and construct a
finite-dimensional approximation of this problem in the form
of a sequence of linear programming problems. In this re-
gard, we can assume that the solution of a finite-dimensional
problem with a sufficiently large number is an approximate
solution to the original problem. When solving this prob-
lem numerically, a number of difficulties arise, which have
not been considered practically until now. An exact solu-
tion to this problem may not exist. In this work, the problem
statement is refined and the so-called quasi-solution is intro-
duced, which is quite acceptable from the applied point of
view. Here, a method of finite-dimensional approximation of
the problem is proposed, on the basis of which the main al-
gorithms are developed, and a technique for the approximate
finding of a quasi-solution is created.

In this paper, we consider the problem of finding the dis-
tribution of the density of heat sources, which provides a
given temperature regime at the minimum total power of
these sources. A method and an algorithm for solving non-
stationary problems with the optimal choice of the density
of heat sources on a parallelepiped in such a way that the
temperature is within the specified limits are proposed. A
software application has been created for carrying out com-
putational experiments using this algorithm.

II STATEMENT OF THE PROBLEM AND ITS
FINITE-DIMENSIONAL APPROXIMATION

Let the domain D = {a≤ x≤ b, c≤ y≤ d, p≤ z≤ q, 0≤
t ≤ T} be required to define a function f (x,y,z, t) ≥ 0 that,
for each t ∈ [0,T ], provides a minimum to the linear func-
tional

J{ f}=
b∫

a

d∫
c

q∫
p

f (x,y,z, t)dzdydx→min, (1)
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under the following conditions:

∂u
∂ t

= χ

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+ f (x,y,z, t),

x ∈ (a,b), y ∈ (c,d), z ∈ (p,q), t ∈ (0,T ],
u(x,y,z,0) = u0(x,y,z),

u(a,y,z, t) = µ1(y,z, t), u(b,y,z, t) = µ2(y,z, t),
u(x,c,z, t) = µ3(x,z, t), u(x,d,z, t) = µ4(x,z, t),
u(x,y, p, t) = µ5(x,y, t), u(x,y,q, t) = µ6(x,y, t),

a≤ x≤ b, c≤ y≤ d, p≤ z≤ q, 0 < t ≤ T.

(2)

m(x,y,z, t)≤ u(x,y,z, t)≤M(x,y,z, t), (x,y,z, t) ∈ D. (3)

Here u = u(x,y,z, t) – is the temperature at the point
(x,y,z) of the parallelepiped at the time t; χ – thermal diffu-
sivity; u0(x,y,z), µ1(y,z, t), µ2(y,z, t), µ3(x,z, t), µ4(x,z, t),
µ5(x,y, t), µ6(x,y, t), m(x,y,z, t), M(x,y,z, t) – are given
continuous functions. Here m(x,y,z, t), M(x,y,z, t) – are
functions of the minimum and maximum temperature pro-
files in the parallelepiped D, respectively. The density of
heat sources is described by a square-integrable function
f (x,y,z, t) in the space L2(D). The solution to this boundary
value problem can be obtained in an analytical form using
the Fourier method [16].

Operator Lu =
∂u
∂ t
− χ

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
with initial

and the boundary condition will be self-adjoint, positive def-
inite in L2(D), which means that it has a bounded inverse
operator G = L−1. It can be used to reformulate the problem
(1)-(3) as a problem on the minimum of the functional (1)
under the following conditions on the density of sources:

m(x,y,z, t)≤ (G f )(x,y,z, t)≤M(x,y,z, t),
f (·, ·, ·, ·) ∈ L2(D), f (x,y,z, t)≥ 0. (4)

This problem in a mathematical formulation will be solved
by the finite difference method on a uniform grid. To do
this, divide the parallelepiped into N1 in width, N2 in length,
N3 in height into equal intervals, and construct, of course, a
difference mesh.

Further, we replace the conditions (2) by their finite-
difference analogs. In this case, we will use an implicit
scheme.

Introduce in D a difference grid uniform in four variables
ωh1h2h3τ =ωh1 ×ωh2 ×ωh3 ×ωτ ={(xi,y j,zk, ts): xi = ih1,
y j = jh2, zk = kh3, ts = sτ , i = 0,1, . . . ,N1, j = 0,1, . . . ,N2,
k = 0,1, . . . ,N3, s= 0,1, . . . ,N4}with steps h1 = (b−a)/N1,
h2 = (d− c)/N2, h3 = (q− p)/N3, τ = T/N4.

The implicit difference scheme for the (2) problem has the

form [17]:

us+1
i jk −us

i jk

τ
= χ

(
us+1

i+1 jk−2us+1
i jk +us+1

i−1 jk

h2
1

+

us+1
i j+1k−2us+1

i jk +us+1
i j−1k

h2
2

+

us+1
i jk+1−2us+1

i jk +us+1
i jk−1

h2
3

)
+ f s+1

i jk , i = 1,N1−1,

j = 1,N2−1, k = 1,N3−1, s = 0,N4−1,

u0
i jk = u0(xi,y j,zk),

us+1
0 jk = µ1(y j,zk, ts+1), us+1

N1 jk = µ2(y j,zk, ts+1),

us+1
i0k = µ3(xi,zk, ts+1), us+1

iN2k = µ4(xi,zk, ts+1),

us+1
i j0 = µ5(xi,y j, ts+1), us+1

i jN3
= µ6(xi,y j, ts+1),

i = 0,N1, j = 0,N2, k = 0,N3, s = 0,N4−1.

(5)

Here f s+1
i jk = f (xi,y j,zk, ts+1)+O(τ +h2

1 +h2
2 +h2

3).
Let us introduce the notation

XY Z =

(
1
τ
+

2χ

h2
1
+

2χ

h2
2
+

2χ

h2
3

)
,

X =− χ

h2
1
, Y =− χ

h2
2
, Z =− χ

h2
3
.

Consider the matrix

A =



XY Z Z 0 ... 0 Y 0 ... 0 X 0 ... ... 0

Z XY Z Z 0 ... 0 Y 0 ... 0 X 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 ... 0 X 0 ... 0 Y 0 ... 0 Z XY Z Z

0 ... ... 0 X 0 ... 0 Y 0 ... 0 Z XY Z


.

We get
G = A−1.

Let us construct a finite-dimensional approximation (1)-(5)
as a linear programming problem. We divide the domain D
into variables x,y,z, t, respectively, into N1, N2, N3, N4 of

equal parts: D =
N4⋃

s=1

N1⋃
i=1

N2⋃
j=1

N3⋃
k=1

Ds
i jk, where Ds

i jk = {(x,y,z, t),

xi−1 ≤ x≤ xi, y j−1 ≤ y≤ y j, zk−1 ≤ z≤ zk, ts−1 ≤ t ≤ ts}, i =
1,N1, j = 1,N2, k = 1,N3, s= 1,N4. Denote by SN4

N1N2N3
(D)⊂

L2(D) the subspace in which piecewise constant functions
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of the form f (x,y,z, t) = f s
i jk, (x,y,z, t) ∈ Ds

i jk (i = 1,N1−1,
j = 1,N2−1, k = 1,N3−1, s = 1,N4). Introduce in
SN4

N1N2N3
(D) a basis consisting of the functions es

i jk(x,y,z, t) =
1, (x,y,z, t) ∈ Ds

i jk and es
i jk(x,y,z, t) = 0, (x,y,z, t) /∈

Ds
i jk. Then f (x,y,z, t) ≈

N4

∑
s=1

N1−1

∑
i=1

N2−1

∑
j=1

N3−1

∑
k=1

f s
i jkes

i jk(x,y,z, t).

Let grw = (Ges
i jk,es

i jk), (m(x,y,z, t),es
i jk(x,y,z, t)) = ms

i jk,
(M(x,y,z, t),es

i jk(x,y,z, t)) =Ms
i jk, f̃ s

w = f s
i jk, (r =w, w= (i−

1)(N2−1)(N3−1)+( j−1)(N3−1)+k), N =(N1−1)(N2−
1)(N3− 1), r = 1,N, w = 1,N, i = 1,N1−1, j = 1,N2−1,
k = 1,N3−1, s = 1,N4, where (·, ·) – is a scalar product
in L2(D). Substituting the expression for f (x,y,z, t) in (1)
and scalar multiplying the inequalities (4) by es

i jk(x,y,z, t) in
L2(D). As a result, we get the linear programming problem

Js{ f}=
N1−1

∑
i=1

N2−1

∑
j=1

N3−1

∑
k=1

(mesDs
i jk) f s

i jk→min,

ms
i jk ≤

N

∑
w=1

grw f̃ s
w ≤Ms

i jk, r = 1,2, ...,N,

i = 1,N1−1, j = 1,N2−1, k = 1,N3−1, s = 1,N4,
f̃ s
w ≥ 0, w = 1,2, ...,N, s = 1,2, ...,N4.

(6)

By solving the problem (6) numerically, we find the func-

tion us
i jk =

N

∑
w=1

grw f̃ s
w, (i = (r− 1)÷ (N2− 1)(N3− 1) + 1)

which is a solution to the boundary value problem (2) with
f̃ s
w, where÷ is the integer division character. In this case, the

(6) problem is solved by the simplex method [18].

III DESCRIPTION OF ALGORITHMS AND RESULTS OF
NUMERICAL EXPERIMENTS

For an approximate solution of the problem (1)-(6), soft-
ware has been developed in the C# language. It allows you to
represent all the necessary input data: constants, coefficients,
mesh parameters, as well as temperature functions, initial
and boundary conditions, in the form of scripts. Graphic
modules have been developed to present the results.

The block diagram (Fig. 1) shows the general algorithm
for solving the problem using the numerical method to calcu-
late Jmin. For one and two-dimensional cases, a large number
of computational experiments were carried out with different
values of the input data.

Example 1. Find the optimal distribution density of
sources on a parallelepiped. The cube (0 ≤ x,y,z ≤ 1) with
χ = 0.5 m2/s is used as the computational domain. The ini-
tial and boundary conditions are determined by the functions:
u0(x,y,z) = 2+x2+y2+ z2 m/s, µ1(y,z, t) = 2+y2+ z2+ t2

m/s, µ2(y,z, t) = 3+ y2 + z2 + t2 m/s, µ3(x,z, t) = 2+ x2 +
z2 + t2 m/s, µ4(x,z, t) = 3+ x2 + z2 + t2 m/s, µ5(x,y, t) =

Fig. 1: Flowchart of the general algorithm for solving the problem

2 + x2 + y2 + t2 m/s, µ6(x,y, t) = 3 + x2 + y2 + t2 m/s.
The bounding temperature curves are given by the func-
tions m(x,y,z, t) = 1 + x2 + y2 + z2 + t2 K, M(x,y,z, t) =
4 + x2 + y2 + z2 + t2 K and the end time is T = 1. Com-
putational grid with the number of sources (N1− 1)×(N2−
1)×(N3−1)×N4 = 6×6×6×7. In fig. 2 presents the results
of the numerical solution of the problem (6). The minimum
for the numerical solution of the value of the functional is
Jmin = 17.31 K·m/s. The results are presented with the min-
imum (blue borders), maximum (red borders) and approxi-
mate (green) temperature values. To illustrate the effective-
ness of the developed method, Fig. 3 in the form of a his-
togram, the optimal distribution of sources is shown.

IV CONCLUSION

As you know, the construction of the Green’s function for
problems in partial derivatives, in fact, means finding a solu-
tion in an explicit form. When applying numerical methods,
the values of the Green’s function are represented in the form
of a matrix, which is inverse to a matrix composed of the co-
efficients of a system of linear algebraic equations. Thus, it
is possible to indicate the values of the required function at
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Fig. 2: Graph of the solution of the problem (6) at different times: for x = 0.5, t = 0(a), for x = 0.5, t = T (b). Solution to the problem lies
in a given range is shown, i.e. the solution satisfies inequality (3). The value of m(x, t) is practically equal to the minimum temperature can

be seen. This means that the functional J{ f} reaches a minimum

Fig. 3: Distribution of the optimal density of heat sources f (x,y,z, t) : in the usual (a) and inverted form (b). The power of the optimally
placed heat sources is displayed as histogramme graph. All power sources are highlighted in green color. In general, high-power sources

are located mainly on the border of the region
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the nodal points of the partition. After substituting these val-
ues on the conditions-limitations of body temperature, taking
into account the finding of the extremum of the functional,
a linear programming problem is obtained, for the solution
of which the standard M-method algorithm is used. Meth-
ods and algorithms for solving the non-stationary problem of
ensuring the temperature inside the region within the speci-
fied limits by optimal placement of heat sources in the par-
allelepiped are proposed. The results of this computational
experiment show that the functional has reached a minimum.
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