Acta of Turin Polytechnic University in Tashkent, 2023, 30, 34-37

Published Online September 2023 in Acta TTPU (http://www.acta.polito.uz/)

DATA STRUCTURE SPARSE TABLE

Iskandarov I.Z.
Urgench branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

Email: islom.iskandarov @ubtuit.uz

Abstract— This article discusses the sparse table data structure:
description, capabilities, and scope of application. The results of
comparison with such data structures as a segment tree and a sqrt
decomposition for two problems are shown. The listing codes are
presented in the C++ programming language.

Key words— data structures, algorithms, sparse table.

I INTRODUCTION

Data structure is a way to store and organize data in order
to facilitate access and modifications [1]. Each data structure
has its own scope, that is, the types of tasks that it can solve.
In this article, we will consider a sparse table data structure
that stores data in a special (sparse) form and allows you to
quickly respond to queries in a segment without modifying
elements.

II THE METHODOLOGY

This data structure was introduced in the article The LCA
Problem Revisited [2] as part of an optimized solution for
the problem. The LCA problem is as follows: Let a tree G be
given. Requests of the form (V1, V2) are received as input,
and for each request it is required to find their least common
ancestor, i.e., vertex V, which lies on the path from the root
to V1, on the path from the root to V2, and from all such
vertices, the lowest one should be chosen.

Fig. 1: Graph example for LCA

In the example shown in Figure 1 node vO is LCA for

nodes vl and v2. The solution to the problem presented in
this article is related to the RMQ (Range Minimum Query)
problem of finding the minimum on a segment, and the
sparse table data structure allows you to effectively solve this
problem.

In the book Competitive Programmer’s Handbook [3] in
Static array queries section also shows a solution for query-
ing the minimums with an example with a static array. This
algorithm is also presented in Internet resources dedicated to
data structures and algorithms. For example, in [4] this al-
gorithm is presented with an implementation in the C++ lan-
guage, the topic is considered in more detail in [5], including
its application for commutative operations.

Formulation of the problem. Suppose we have an array
of numbers A consisting of N elements and we need to find a
certain value for some segment of the array A. Values can be,
for example: the minimum element on the segment, the max-
imum element on the segment, the sum, etc. A sparse table
allows for time and memory overhead O(NlogN) for idem-
potent operations (minimum, maximum, GCD, etc.) respond
to the request in time O(1). Next, consider, as an example,
the use of a sparse table to find the minimum element on a
segment in queries.

Structure Description. The idea behind the sparse table
data structure is the use of a table T for storing answers for
segments. But we cannot store values for all segments, since
the memory consumption will be O(N?), and we will store
values for segments of length 2% where 0 < k < [logan]. For-
mally in T'[{][j] the value for the segment with the left border
[of length 2/ that is, the value for the segment with indices
[I;1+2/ —1]. For example, for an array with elements [3, 2,
4,5, 1, 1,5, 3] of length 8 the table would look like this:

rmq[3]:
rmq[2]:
rmq[1]:

WIN(IN | =
NN
B e
Ul ==
e
= -
[S2I OS]

rmq[0]:

Fig. 2: Table structure for 8 elements

Building. Consider the construction for storing the value

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 34-37

DATA STRUCTURE SPARSE TABLE 2

of the minimum element on the segment. First of all, we need
to calculate the values of binary logarithms; we will calculate
them as integers rounded down. Let’s do a pre-calculation
and store the values in an array:

—_—

. int Ig[N+1];

2. 1g[1]=0;

3. for (int i=2; i<=N; ++i){
4. lglil=lgli/2]+1;

5.}

Listing 1. Calculation of values of binary logarithms of
numbers.

The next step is to build the table itself:
1. for (int i=1; (1< <i) <=N; ++i) {
2. intlen = (I<<i);

3. for (int j=1; j+len-1 <=N; j++) {

4, int tail = j+len-1;
5. T[j1li}=min(T[j][i-1], Tltail-len/2+1][i-1]);
6.}

7.}

Listing 2. Building a sparse table for the minimum

Getting answers. To obtain a value for the segment [/;7]
we “combine” the answers for the two segments [I;1+2/ — 1]
and [r — 2/ + 1;r], where j the largest integer for which 2/ <
r—I1+1,ie. j=[loga(r—141)].

I 24
e
|
1
2/ ¥

Fig. 3: Combining segments to answer a query

1. int get (int 1, int 1) {

2. int len = r-1+1;

3. int p=Ig[len];

4.

5. return min(T[1][p], T[r-(A<<p) + 1l[p]);

6.)

Listing 3. Receiving a response to a request for a minimum
in a segment

Further in requests we can use this function:
1. int Q;
2. cin >> Q;

3. for (int i=1; i<=Q); i++) {

4. int 1;

5. intr;

6. cin>>1>>r;

7 cout << get(l, 1) << "\n”;

8.)

Listing 4. Getting an answer to a query

The above example can be used for other idempotent op-
erations, for example, for finding the maximum, GCD, etc.
by changing the calculation function for building a table and
receiving an answer.

III RESULTS AND DISCUSSION

Here is a comparative analysis of a sparse table and other
data structures for various tasks (queries) and data size. As a
comparison metric, we take the execution time of programs
using these data structures in the C++ language. The calcu-
lation includes the total time spent (in milliseconds) on the
following operations: building a structure, reading requests
from a file, calculating and outputting results to a file!. The
size of the array is denoted by N, the number of requests is
equal to Q.

Structure/ | N=10* | N=10° | N=10°| N=10°
Datasize | 0=10* | 0=10° | 0=10° | Q0 =5%10°
S t

CBmMeNt | sems | 619ms | 5754 ms | 34178 ms
tree
SQRT-
decompo- 63 ms 806 ms | 7235 ms | 58415 ms
sition
Sparse | s | 802ms | 5594 ms | 30761 ms
table

TABLE 1: COMPARISON OF STRUCTURES FOR THE PROBLEM
RMQ

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 34-37

DATA STRUCTURE SPARSE TABLE 3

I'Standard input operator cin and standard output operator
cout were used to read and write data.

Structure/ | N=10* | N=10° | N=10° | N=10°
Datasize | 0=10* | 0=10° | 0=10% | Q=5%10°
Segment | o, | 613ms | 6387 ms | 32323 ms

tree
SQRT-
decompo- | 56ms | 762ms | 7058 ms | 58890 ms
sition
Sparse | oo s | 722ms | 5586 ms | 31661 ms
table

TABLE 2: COMPARISON OF STRUCTURES FOR THE PROBLEM
OF FINDING GCD ON A SEGMENT

Structure/ | N=10* | N=10° | N=10° | N=10°
Datasize | Q=10 | 0=10° | 0=10° | Q =5%10°
t
Segment | oo ¢ | 634ms | 6863 ms | 40786 ms
tree
SQRT-
decompo- 56 ms 890 ms | 8863 ms | 86058 ms
sition
Sparse |53 ns | 722ms | 5922 ms | 33616 ms
table

TABLE 3: COMPARISON OF STRUCTURES FOR THE PROBLEM
OF FINDING SUM ON THE SEGMENT

Below are data histograms for problems RMQ and sum
(Fig.4, Fig.5). Data sizes are divided into 4 groups:
AN =10*,0=10*),B(N=10°,0 = 10°),C(N = 10°,0 =
10), D(N = 10°,Q = 5% 10°). Time values are calculated us-
ing the natural logarithm for a smoother presentation. More
formally, the time value is replaced by the following expres-
sion:

Time = InTime

Based on the data above, we can see that a sparse table
gives a gain with a larger number of queries relative to the
size of the input data. The first two tables refer to problems
for which this algorithm calculates the answer in constant
time. Additionally, an associative operation (sum) is given in
the third table. For such operations, the structure calculates
the response in logarithmic time. It is noteworthy that in this
case the sparse table gives good results with large data sizes,
especially in the latter case it gives a significant advantage.

12

10

A B C D

W SQRT decomposition

©

L)

IS

N

W Segment tree W Sparse table

Fig. 4: Comparison of structures for the problem RMQ

12

A B c D

W SQRT decomposition

L)

B

N

W Segment tree W Sparse table

Fig. 5: Comparison of structures for the problem of finding sum on
the segment

IV. CONCLUSION

The sparse table data structure is appropriate to use in the
following cases:

1. There is no element modification, that is, the values of
the array elements do not change;

2. The number of queries is large;

3. It is necessary to find the value of an idempotent func-
tion for a segment such as minimum, maximum, etc.
For such operations, a sparse table gives answers in time
O(1), in other cases for O(logN) which no longer gives
advantages over other data structures.

V REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, “Introduction to Algorithms”,
3rd ed, pp. 9.

[2] Antti Laaksonen, Competitive Program-
mer’s Handbook, Draft August 19, 2019.
http://www2.compute.dtu.dk/courses/02282/2021/nca
/CPbook.pdf

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 34-37

DATA STRUCTURE SPARSE TABLE 4
[3] M.A. Bender, M.Farach-Colton. The LCA problem re-

visited. In Latin American Symposium on Theoretical
Informatics, 88-94, 2000.

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 34-37

