
Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27

Published Online December 2023 in Acta TTPU (http://www.acta.polito.uz/)

DECOUPLING DESIGN PATTERNS

Iskandarov I.Z.
Urgench branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

Email: islom.iskandarov@yandex.ru

Abstract– The article discusses decoupling patterns that are used
as the basis for creating ORM (Object Relational Mapper) technol-
ogy. Three decoupling patterns are considered: description, the
problem that the pattern solves, the advantages and disadvantages
of each pattern. Comparative characteristics and SWOT analysis
are also shown.

Key words– design patterns, ORM, database

I INTRODUCTION

Design pattern - an architectural solution to a task or prob-
lem that arises when designing software. Design patterns
make it easier to reuse successful designs and architectures.
Expressing proven techniques as design patterns makes them
more accessible to developers of new systems [1]. Design
patterns have a number of advantages: scalability, they are
time-tested and experienced by software architects and de-
velopers, reduction in design time due to the use of ready-
made “templates”. Design patterns also form an informal
standard and terms (names) for solving known problems.
This makes it easier to analyze and study the system if you
indicate the name of the pattern used in the design of a partic-
ular part of the system. The relevance of database design pat-
terns is determined by the fact that in most cases the system
needs to store and process data and thereby use the database.
Database design patterns allow you to simplify working with
databases, build abstractions between application layers, and
define the application architecture when working with data.
Typically, a design pattern description consists of the follow-
ing parts:

1. Name – defines the meaning of the pattern and the stan-
dard name for further use. The names form a dictionary
of patterns.

2. Description of the problem - indicates the problem or
case in which the problem occurs and also defines the
statement of the problem.

3. Solution – indicates an architectural solution to a prob-
lem, usually using diagrams.

4. Result – shows the advantages, disadvantages, limita-
tions of using the design pattern.

II LITERATURE ANALYSIS AND METHODOLOGY

One of the fundamental literature on this theme is the book
“Patterns of Enterprise Application Architecture” by Mar-
tin Fowler [2]. The book covers the theme in the context
of using patterns to create enterprise applications. This lit-
erature discusses the theme of the object model and rela-
tional databases, various problems of interaction of an ap-
plication with databases, object-based data mapping (use of
OOP), and creating layers between the application and the
database. Several database patterns are presented, such as:
Active Record, Data Mapper, Gateway, Identity Map and
others.

Some literature approaches the theme based on specific
programming languages. For example, in [3], in the chap-
ter Database Patterns, there are given some patterns with a
description, implementation in the programming language
PHP and the consequences of using the pattern. The theme
is discussed in detail in [4] given such patterns as: Data Ac-
cessor (Data Access Object), Active Domain Object (Active
Record), Object/Relational Map and others. For each pat-
tern, an implementation in the Java programming language
is provided. Data caching patterns are also discussed.

1 Object model and relational mapping
Let us look at interacting with data in an application

(data layer) in the context of the OOP paradigm and rela-
tional databases. Let’s define an object model as a model in
which database entities will represent classes (models) and
entity data will represent objects. In the case of a relational
database, one object will represent one record in the table,
and the object’s properties store the values of the record’s at-
tributes. This model can be called object-relational. Table 1
shows the relationship between the elements of the relational
database and the object-relational model.

Figure 1 shows an example of representing a table through
a class.

Object-relational mapping (ORM) technology is built on

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27



DECOUPLING DESIGN PATTERNS 2

Relational data model Informal name Object-relational model
Relation Table Class (Model)

Tuple Record, Row Object
Attribute Column Property (of an object)

Selection* Result table Collection

*This is a relational algebra operation that consists
of selecting data

TABLE 1: CORRESPONDING ELEMENTS OF THE RELATIONAL DATA MODEL AND THE OBJECT-RELATIONAL MODEL

the basis of this model. The task of ORM is to ensure work
with the database in the application using OOP. Queries to
the database are carried out through methods and work with
data is carried out through objects. Thus, ORM creates an ab-
straction and encapsulates working with data and executing
queries to the database.

Fig. 1: Representing a database table through a class

Figure 2 shows the interaction diagram of ORM with the
database

Fig. 2: Interaction between the model and the database

2 Classification of Database Patterns
Based on the problems that the pattern solves and the level

of abstraction, database patterns can be divided into cate-
gories. In this article, we will define and consider some of
them.

One of the main architectural problems when an applica-
tion interacts with databases is to separate a part that works
with data from other parts of the application, that is, create
a data layer and also provide a way for this layer to interact
with the business logic of the application. The most popular
scheme is to divide the application into 3 layers: presenta-
tion, business logic, data layer (Figure 3).

Fig. 3: Dividing the application into layers

To solve this problem, we define a category of decou-
pling patterns. Decoupling patterns define how application
code relates to its data model and data access code. As you
decide on an application architecture, you need to consider
how much cohesion you want between orthogonal compo-
nents based on how much you expect them to vary indepen-
dently. Decoupling components also makes it easier to build
and maintain them concurrently [4]. Examples of decoupling
patterns include the following patterns: Active Record, Data
Access Object, etc.

The next category of patterns is behavioral patterns. Be-
havioral patterns address issues of object state, identification,
and loading. This category includes such patterns as: Unit
of Work, Identity Map, etc. Data modeling patterns pre-
scribe the structure and method of organizing data for dif-
ferent contexts. This category focuses on solving architec-
tural problems at the database level. This category of pat-

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27



DECOUPLING DESIGN PATTERNS 3

Fig. 4: Incomplete classification of database patterns

terns includes: EAV, Hierarchy Pattern, etc. Also, other cat-
egories are indicated in different sources. For example, in
[2] are given object-relational mapping patterns (Metadata
Mapping, Query Object), object-relational structural patterns
(Identity Field, Foreign Key Mapping) in [4] resource pat-
terns (Resource Decorator, Resource Pool). Figure 4 shows
a classification diagram based on the three patterns described
above.

3 Decoupling patterns
Active Record. In this pattern, an object represents the

data of a single row of a database table as in the object model,
encapsulates access to the database and also includes busi-
ness logic. Business logic is included as object methods. Fig-
ure 5 shows an example of the Active Record pattern model.

Fig. 5: Model of the Active Record pattern

Problem. As noted above, if there is a need to use a
database in an application, the most correct thing is to create
a layer for working with data so that other parts of the appli-
cation do not interact directly with the data (this increases the
complexity of the application and the connectivity between
components) and also add the ability to define business logic

in the process interaction with this layer.
Solution. The Active Record pattern solves this problem

by using an object model and incorporating business logic
into the object. Based on this, the following are usually in-
cluded in the Active Record:

• fields corresponding to the table schema, access and
modification methods (getters/setters) for them;

• various data transformation methods (mutators);

• methods for inserting, deleting, and updating data;

• data retrieval methods;

• business logic operations associated with this model.

It should be noted that Active Record usually interacts
with the interface of a physical database adapter that will ex-
ecute SQL queries to the database.

Purpose. Active Record is a good choice for business logic
that isn’t too complex, such as creates, reads, updates, and
deletes. Derivations and validations based on a single record
work well in this structure. Active Record is used by many
ORMs and can be said to be an implementation of ORM.

Results. Using this pattern gives the following results:
Benefits

• Easy to add business logic;

• Simplifies working with data. Creates an abstraction
for working with data other parts of the application do
not need to know implementation details and can access
models;

• Groups related data access code into a single compo-
nent.

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27



DECOUPLING DESIGN PATTERNS 4

Drawbacks

• Violates the Single Responsibility Principle (SRP). The
model will contain both business logic and data process-
ing;

• Active Record is following the Database-First approach.
You create a database and then model it in the code. It
means that entities do not contain logic;

• When changing the way data is stored, problems with
code refactoring may arise.

Data Access Object. An object that encapsulates and ab-
stracts access to data from a persistent store or an external
system. The Data Access Object or DAO pattern is used
to separate low level data accessing operations from the ap-
plication or business logic layer. Usually it uses relational
databases as the data source, but may use other storage mech-
anisms and source types.

Problem. We can access source APIs directly to work with
data, but this creates a strict dependency on that source or
storage mechanism. That is, when changing the source, you
will have to make changes to the code base in those places
where access to the API is used. Using the Active Record
example, it was indicated that it interacts with the interface
of a physical database adapter that will execute SQL queries
to the database.

Solution. Use a Data Access Object (DAO) to abstract and
encapsulate all access to the data source. The DAO manages
the connection with the data source to obtain and store data.
The DAO provides an interface that ensures the necessary
methods for working with a data source. Since the interface
does not change, we can change the source quite easily. The
DAO creates an abstraction for working with a data source
and hides the implementation details. The data source can be
relational DBMS, external data storage, files, etc. Following
are the participants in Data Access Object Pattern:

• DAO interface - This interface defines the standard op-
erations to be performed on a model object(s);

• DAO concrete class - This class implements above in-
terface. This class is responsible to get data from a data
source which can be database / xml or any other storage
mechanism;

• Transfer object – This object contains data retrieved
from source which are stored in object fields and ac-
cess methods for this fields (getters/setters). The Data
Access Object may use a Transfer Object to return data
to the client;

• DataSource - This represents a data source implemen-
tation. A data source could be a database such as an

RDBMS, OODBMS, XML repository, flat file system,
and so forth;

• BusinessObject - The BusinessObject represents the
data client. It is the object that requires access to the
data source to obtain and store data.

Figure 6 shows the class diagram representing the relation-
ships for the DAO pattern.

Fig. 6: The Data Access Object structure diagram

Figure 7 shows an example of the DAO class diagram.

Fig. 7: Example of the DAO

Results. Using this pattern gives the following results:
Benefits

• Enables Transparency. Business objects can use the data
source without knowing the specific details of the data
source’s implementation. Access is transparent because
the implementation details are hidden inside the DAO;

• Enables Easier Migration. A layer of DAOs makes
it easier for an application to migrate to a different
database implementation;

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27



DECOUPLING DESIGN PATTERNS 5

• Reduces Code Complexity in Business Objects. Be-
cause the DAOs manage all the data access complexi-
ties, it simplifies the code in the business objects and
other data clients that use the DAOs.

Drawbacks

• Adds Extra Layer. The DAOs create an additional layer
of objects between the data client and the data source
that need to be designed and implemented to leverage
the benefits of this pattern. But the benefit realized by
choosing this approach pays off for the additional effort;

• Needs Class Hierarchy Design. When using a factory
strategy, the hierarchy of concrete factories and the hi-
erarchy of concrete products produced by the factories
need to be designed and implemented.

Data Mapper. A Data Mapper is a pattern that performs
bidirectional transfer of data between a persistent data store
(often a relational database) and an in-memory data repre-
sentation.

Problem. The data we receive from a data source (usually
a relational database) can be in different formats. Relational
databases store data in the form of tables that consist of rows
and columns. The format may differ for other storage sys-
tems. As with the object model, we need to map this data as
an object and push changes back to the database if necessary.
In addition, we may only need part of the data or a different
storage structure.

Solution. The approach to solving this pattern is similar to
the Data Access Object pattern. In practice, these two pat-
terns provide a similar solution. A layer for working with
data is created and a data transfer object is used/generated.
But the Data Mapper pattern pays special attention to dis-
playing data in an object and uses an additional EntityMan-
ager class. Figure 8 shows the class diagram of the DataMap-
per pattern.

Results. Using this pattern gives the following results:
Benefits

• Allows flexible customization of the creation of data ob-
jects that can come from different sources and in differ-
ent formats;

• Separates the business logic of the application and the
data layer. Separates other parts of the application from
working with data and creates a single area of responsi-
bility in the data layer;

• Good testability. The Data Mapper pattern promotes
testability by decoupling the domain objects from the
database. Since the domain objects are not tightly cou-
pled to the database operations, you can easily write unit

Fig. 8: The DataMapper structure diagram

tests for the business logic without the need for an actual
database connection.

Drawbacks

• Increased complexity. The Data Mapper adds an extra
layer of abstraction, which can make the overall archi-
tecture more complex and harder to understand;

• Performance overhead. The data mapper must translate
between the domain and the persistence layer, adding a
performance overhead.

III RESULTS AND DISCUSSION

Table 2 provides a comparison of the three patterns above.
Numerical characteristics are given on a scale from 0 to 5.

Figure 9 shows a SWOT (Strengths, Weaknesses, Oppor-
tunities, Threats) analysis of the Active Record pattern.

Fig. 9: SWOT analysis the Active Record

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27



DECOUPLING DESIGN PATTERNS 6

Pattern
name

Antipattern Which ORMs
use the pattern

Popularity
(0-5)

Complexity
(0-5)

Related
patterns

Flexibility
(0-5)

Testability
(0-5)

Active
Record

Yes
Laravel, Yii2,

Django,
ActiveJDBC

5 2

Data Accessor,
Object/Relational

Map,
Selection Factory

3 3

Data
Access
Object

No
Persist,

Entity Framework,
Hibernate

3 3

DTO, Singleton,
Abstract Factory,

Command,
Table Data Gateway

5 4

Data
Mapper

No

Doctrine2,
SQLAlchemy,
Cycle ORM,

Hibernate

4 4
DTO, Domain

Object Assembler,
Table Data Gateway

5 5

TABLE 2: COMPARISON TABLE OF THE THREE PATTERNS

Figure 10 shows a SWOT analysis of the Data Access Ob-
ject pattern.

Fig. 10: SWOT analysis the Data Access Object

Figure 11 shows a SWOT analysis of the Data Access Ob-
ject pattern.

Fig. 11: SWOT analysis the Data Access Object

IV CONCLUSION

The patterns considered are used by most ORMs and are
the basis for their creation. However, decoupling patterns
do not solve all the problems that arise when creating an
ORM. Thus, it is necessary to use additional patterns, ar-
chitectural solutions, algorithms, and models to build a full-
fledged ORM. Which decoupling pattern to choose depends
largely on the tasks being solved and the scale of the applica-
tion. The Active Record pattern is the most popular and easy
to use, and we can choose this pattern if the business logic
of the application is not too complex. On the other hand, for
large applications, it is recommended to use the Data Access
Object and Data Mapper patterns. However, they increase
the complexity of the application, thereby complicating de-
velopment. In general, we can say that these patterns are
almost equivalent and perform similar tasks.

V REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, “Design Patterns: elements of reusable
object-oriented software”. Addison-Wesley, 1995

[2] Martin Fowler, David Rice, Matthew Foemmel, Ed-
ward Hieatt, Robert Mee, Randy Stafford, “Patterns of
Enterprise Application Architecture”, Addison-Wesley,
November 05, 2002.

[3] Matt Zandstra, “PHP Objects, Patterns, and Practice,
Second Edition”, Apress, 2008.

[4] Clifton Nock, “Data Access Patterns: Database In-
teractions in Object-Oriented Applications”, Addison-
Wesley, September 15, 2003.

Acta of Turin Polytechnic University in Tashkent, 2023, 30, 22-27


