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Abstract– In this paper, the inverse Cauchy problem for the heat
equation was considered, namely, its approximate solution is con-
structed by the quasi-inversion method.
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I INTRODUCTION

We consider the inverse Cauchy problem for the heat equa-
tion, construct an approximate solution of this problem by
the quasi-inverse method using solutions of the Cauchy prob-
lem for the pseudo-parabolic equation.

Consider heat equation

ut (x, t) =−uxx (x, t) (1)

in the D = {(x, t) : 0 < x < π, t > 0} .
Problem. Find the continuous in D̄ function u(x, t) which

satisfies the equation (1) in the region D and following initial

u(x,0) = ϕ(x), 0≤ x≤ π, (2)

boundary conditions

u(0, t) = 0,
u(π, t) = 0, 0≤ t ≤ T. (3)

Problem (1) - (3) is called the inverse Cauchy problem
for the heat equation. It is incorrect problem in the sense
of Hadamard, which means a "small" change in the data can
lead to a "big" change in the solution. Note that the inverse
problem under consideration can be solved by many meth-
ods, such as the method of regularization of A. N. Tikhonov
[1], the method of M. M. Lavrentyev [2], the method of
quasi-solutions of V. K. Ivanov [3, 4], the quasi-inverse

method by J. Lyons and so on. Most of the methods used
to solve inverse problems of mathematical physics are also
applicable to solving the classical (direct) problem of heat
conduction.

The theoretical foundations and numerical solution of the
inverse Cauchy problem for the heat equation have been con-
sidered by many authors. In the paper by Mu H., Li J. and
Wang X [5] a cost function was constructed for the inverse
heat problem and for its transformation into an optimization
problem by the Tikhonov regularization method. P. Duda
in his work [6] used the method of semi-discrete control to
determine the temperature distribution in the plate. Kh. K.
Al-Mahdawi in [7] solves the inverse Cauchy problem for the
heat equation by the Picard method, which uses a regulariz-
ing family of operators {RN} that map the space L2 [0,1] into
itself.

In this paper, an approximate solution of the problem is
constructed by replacing the considered problem with a prob-
lem of mathematical physics that is "close" to it in type. Sec-
tion 2 presents the results of previous authors’ work on the
conditional correctness of this problem. In the next section,
an auxiliary problem is presented and theorems on unique-
ness and conditional stability are given. In the fourth section,
the convergence of the solution of the auxiliary problem to
the solution of original problem is proved.

An estimate of the conditional stability and uniqueness of
the solution of this problem (1)-(3) follows from the works
of S.G. Crane [8] and M. Landis [9].

II PRELIMINARY MATERIAL

Definition 1. By the solution of the problem we mean
a continuous function in D̄, a function having continuous
derivatives participating in the equation, satisfying the equa-
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tion in D and conditions (2) - (3).
If a solution to problem (1) - (3) exists, then it can be rep-

resented as

u(x, t) =
∞

∑
n=1

ϕnen2t · sinnx., (4)

where ϕn =
1
π

π∫
0

ϕ (x)sinnxdx.

Here are some auxiliary lemmas.
Lemma 1. For the solution of the equation (1) at t ∈ [0,T ]

the following estimate

π∫
0

u2 (x, t)dx≤

 π∫
0

u2 (x,0)dx

1− t
T

·

 π∫
0

u2 (x,T )dx

 t
T

(5)
is valid.
For the proof of the lemma see [10].
Let

M = {u(x, t) : ‖u(x,T )‖ ≤ c} (6)

Theorem 1. If a solution to problem (1) - (3) exists and
u(x, t) ∈M, then it is is unique.

For the proof of the theorem see [8].
Let u(x, t) be the solution of the problem (1) - (3) with

exact data, and let uε(x, t) be the solution of the problem (1)
- (3) with approximate data.

Theorem 2. Let the solution of the problem (1) - (3) ex-
ists and u(x, t) ,uε (x, t) ∈M, ‖ϕ (x)−ϕε (x)‖ ≤ ε. Then for
U(x, t) = u(x, t)−uε(x, t) at t ∈ (0;T ) the estimate

‖U(x, t)‖2 ≤ ε
2(1− t

T ) · (2c)
2t
T (7)

is valid.
For the proof of the theorem see [8].

III THE CAUCHY PROBLEM FOR THE
PSEUDO-PARABOLIC EQUATION

Problem. Find the continuous in D̄ function v(x, t) which
satisfies the equation

vt = αvtxx− vxx, (x, t) ∈ D, α > 0 (8)

and conditions

v(x,0) = ϕ(x), x ∈ [0,π] , (9)

v(0, t) = 0,
v(π, t) = 0, 0≤ t ≤ T. (10)

If a solution to problem (8) - (10) exists, then it can be
represented as

v(x, t) =
∞

∑
n=1

ϕne
n2t

αn2+1 sinnx. (11)

Lemma 2. Let in the domain D function v(x, t) satisfies
equation (8) and conditions (9)-(10), then for the solution
v(x, t) for any x, t ∈ D the estimate

π∫
0

v2 (x, t)dx≤

 π∫
0

v2 (x,0)dx

 T−t
T
 π∫

0

v2 (x,T )dx

 t
T

(12)
is valid.
Proof. Let ψ (t) defined as follows

ψ (t) = ϕ
2e

2n2t
αn2+1 .

Let us calculate the first and second orders derivatives of
the function ψ (t)

ψ
′
(t) = e

2n2t
αn2+1

2n2

αn2 +1
ϕ

2.

ψ
′′
(t) = e

2n2t
αn2+1

4n4

(αn2 +1)2 ϕ
2.

Denote γ (t) = lnψ (t). Then

γ
′′
(t) =

ψ ·ψ ′′ −ψ
′2

ψ2 ≥ 0

That from the last inequality

γ (t)≤ γ (0)
T − t

T
+ γ (T )

t
T
.

When going back to ψ (t) we get

ψ (t)≤ (ψ (0))
T−t

T (ψ (T ))
t
T

Hence

π∫
0

v2 (x, t)dx≤

 π∫
0

v2 (x,0)dx

 T−t
T
 π∫

0

v2 (x,T )dx

 t
T

.

Theorem 3. The solution of the problem (8)-(10) exists
and it is unique.
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Proof. Existence. Consider series (11). To determine the
necessary and sufficient conditions for the existence of a so-
lution to problem (8)-(10), it is necessary to prove the uni-
form convergence of the following series, which are deriva-
tives of the functional series (11) participating in the equation
(8):

vt (x, t) =
∞

∑
n=1

n2ϕne
n2t

αn2+1 sinnx
αn2 +1

, (13)

vtxx (x, t) =
∞

∑
n=1

−n4ϕne
n2t

αn2+1 sinnx
αn2 +1

, (14)

vxx (x, t) =
∞

∑
n=1
−n2

ϕne
n2t

αn2+1 sinnx. (15)

For all three series, we define the majorant series as fol-
lows

∞

∑
n=1

n2 |ϕn|. (16)

For the uniform convergence of series (12) - (14), it suf-
fices to show the convergence of the general majorant series
(15). The proof of the convergence of series (15), in turn, re-
duces to the proof of the convergence of the following series

∞

∑
n=1

n2 |ϕn|. (17)

From the known properties of the Fourier series (11), we
obtain the requirements for the function ϕ (x):

The derivatives of the function ϕ (x) are continuous up to
the second order inclusive, the third derivative is piecewise
continuous and

ϕ (0) = ϕ (π) = 0, ϕ
′′
(0) = ϕ

′′
(π) = 0. (18)

Uniqueness. Let there exist two solutions of problem (8) -
(10) which satisfy equation (8) with the same conditions (9) -
(10). Then it is obvious that v= v1−v2 also satisfies equation
(8) with homogeneous initial and boundary conditions. The
corresponding problem has the form

vt = αvtxx− vxx,α > 0,(x, t) ∈ D (19)

v(x,0) = 0, x ∈ [0,π] (20)

v(0, t) = 0,
v(π, t) = 0, 0≤ t ≤ T. (21)

According to (19) - (21) and the inequality from Lemma

1, we have
π∫
0

v2 (x, t)dx≤ 0 or v(x, t) = 0. Hence v1 = v2, i.e.

the solution to the problem is unique.

IV APPROXIMATE SOLUTION BY THE
QUASI-INVERSION METHOD

Obviously, the family of operators Bα defined by the for-
mula uα (x, t) = Bα ϕ (x) is a regularizing family with respect
to the Cauchy problem.

Let us estimate the efficiency of the regularizing family.
It is easy to see that

‖Bα‖= max
n

e
n2t

αn2+1 ≤ e
t
α (22)

As an approximate solution based on approximate data,
consider the function

uαε
(x, t) =

∞

∑
n=1

ϕnε
e

n2t
αn2+1 sinnx, (23)

where ϕnε
= 2

π

π∫
0

ϕε (x)sinnxdx, n = 1,2, ...

Let us estimate in the norm the difference between the ex-
act solution and the regularized solution from the approxi-
mate data

‖u(x, t)−uαε
(x, t)‖≤‖u(x, t)−uα (x, t)‖+‖uα (x, t)−uαε

(x, t)‖ .
(24)

Let us estimate the first term on the right-hand side of in-
equality (14)

‖uα (x, t)−u(x, t)‖2 =
∞

∑
n=1

ϕ
2
n

(
en2t − e

n2t
αn2+1

)2

(25)

at

‖u(x,T )‖2 =
∞

∑
n=1

ϕ
2
n e2n2T ≤ c2. (26)

To find the conditional extremum, we will use the La-
grange multiplier method.

Let us construct the Lagrange function

F (ϕn,λ )=
∞

∑
n=1

ϕ
2
n

(
en2t − e

n2t
αn2+1

)2

+λ

(
∞

∑
n=1

ϕ
2
n e2n2T − c2

)
.
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From ∇F (ϕn,λ ) = 0 we have that the value of the esti-
mated norm does not exceed the maximum of the following
expression

ϕn

(
en2t − e

n2t
αn2+1

)

ϕnen2T ≤ c.

That is, does not exceed the maximum of the function

γ (n) = ce−n2(T−t)
(

1− e−
n4tα

αn2+1

)
.

Find the extremum of the function γ (n).

γ (n)≤ c
n4tα

αn2 +1
e−n2(T−t) ≤ c ·n4tα · e−n2(T−t) = β (n)

β
′
(n) = ctαn3 [4−2n2 (T − t)

]
e−n2(T−t)

Hence it follows that

n2 =
2

T − t
.

Then

max
n

γ (n)≤max
n

β (n) =
4ct

(T − t)2 αe−2. (27)

Let us estimate the second norm on the right side of the
inequality (24)

‖uα (x, t)−uαε
(x, t)‖2 =

∞

∑
n=1

e
2n2t

αn2+1 (ϕn−ϕnε
)2 ≤ e

2t
α ε

2.

(28)
Considering estimates (27) and (28) we obtain

‖u(x, t)−uαε
(x, t)‖≤‖u(x, t)−uα (x, t)‖+‖uα (x, t)−uαε

(x, t)‖≤ 4ct

(T − t)2 αe−2+e
2t
α ε

2.

(29)
From the right-hand side of inequality (29), for any ε > 0,

we find

inf

{
4ct

(T − t)2 αe−2 + e
2t
α ε

2

}
= ψ (ε) , t 6= T

and find α.
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