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Abstract– A mathematical model of the problem of pulse propa-
gation in a semi-infinite gas pipeline was compiled by expressing
the pressure drop by a quadratic law of resistance and by the lo-
cal component of the gas inertia force in the law of conservation
of momentum and using the law of conservation of mass in a one-
dimensional formulation. The model repeats the Riemann problem
but takes into account the frictional resistance force.
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I INTRODUCTION

The study in [1] is devoted to the modeling and numeri-
cal calculation of the gas distribution pipeline network with
a special focus on the elementary sections of the gas pipeline.
Gas flues are the most important component of such sys-
tems as they determine the main dynamic characteristics.
Isothermal one-way flow is assumed when simulating gas
flow through a gas flue.

Trunk gas pipelines are the main part of the gas trans-
port system [2]. The main share of energy consumption in
pipeline gas transportation falls on this part of the system.
The characteristics of the pipeline network, along with the
set technological objectives, are the determining factors for
the operating mode of the system equipment, located mainly
at the compressor stations. Simple analytical formulas were
obtained to determine the mass flow rate, pressure and su-
percompressibility coefficient [3]. The distribution of the gas
mass flow rate between the parallel lines with a variable gas

supercompressibility coefficient occurs similar to the case of
a constant gas supercompressibility coefficient. The differ-
ence lies in the definition of the inlet and outlet pressure val-
ues, i.e. when solving transcendental equations.

In [4], a new approximate model of gas flow in pipelines
was developed, which makes it possible to calculate the pro-
cesses of unsteady gas flow in gas pipelines considering the
flow inertia. A comparison of the results of calculations for
this model with the exact analytical solution of the original
linearized system of equations for gas transport was con-
ducted.

The problems with the joint consideration of the inertia
force in the form of the local component and the resistance
force expressed by the quadratic law are of particular interest.
These problems are not described by the "long" and "short"
pipeline approaches but in partial cases, they can lead to the
results inherent in these approaches.

Below we will dwell on such problems when a boundary
condition is given for x = 0 and t = 0 , conditions are set
in the form of directional changes in the gas velocity and its
first time derivative. The domain under consideration is the
left semi-axis x,(x≥ 0) .

With the auxiliary function and the transition to traveling
waves, a general solution of the problem is obtained with the
participation of the resistance parameter and some support
function u0 , which is the solution to the Riemann problem
without considering the friction force. Further, with bound-
ary conditions, a solution is obtained with respect to the gas
velocity, which, as ε → 0 , passes to the well-known Rie-
mann solution.
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II SOLUTION OF THE PROBLEM. METHODS

Ignoring the convective component of the gas inertia
force and the route slope from the horizon, the quasi-one-
dimensional equations of conservation of momentum and
mass have the form [5, 6]:

− ∂ p
∂x = ρ

∂u
∂ t + ερu2

− ∂ρ

∂ t = ∂ρu
∂x

(1)

Here x, t are the distance and time; u, p,ρ are the average
values of gas velocity, pressure and density in section x at
time point t; ε = λ

2D is the parameter of the resistance force
by the Darcy-Weisbach law; λ ,D are the friction resistance
coefficient and pipeline diameter.

In the absence of external disturbances, we can pose the
following boundary value problem with the following bound-
ary condition

u(0, t) = µ(t) (2)

and initial conditions

u(x,0) = φ(x),
∂u(x,0)

∂ t
= ψ(x) (3)

Thus, the problem of the gas-dynamic state of a semi-
infinite pipeline (x≥ 0) is solved in this article.

Let us introduce the propagation velocity of small distur-

bances c=
√

∂ p
∂ρ

=
√

ZRT in the real gas flow (Z,R,T are the
supercompressibility coefficient, reduced gas constant and
average gas temperature) transported through the pipeline
and the following auxiliary function

ϕ = ln
ρ

ρ∗
(4)

here ρ∗ is the characteristic gas density. Ignoring the term
u ∂ϕ

∂x in the second equation, which at low hydrodynamic ve-
locities and insignificant disturbances of density is a small
value, allows us to write system (1) in the following form:{

∂u
∂ t + c2 ∂ϕ

∂x =−εu2

∂ϕ

∂ t +
∂u
∂x = 0

(5)

In numerous literary sources, including textbooks [7], this
system is analyzed and solved without the right-hand side of
the first equation.

In some cases, calibration functions are introduced [8]

A = u+ cϕ,B = u− cϕ (6)

Then system (7) takes the form:

{
∂A
∂ t + c ∂A

∂x =−εu2

∂B
∂ t − c ∂B

∂x =−εu2 (7)

With the involvement of the substantial derivative, system
(8) can be written as: {

dA
dx =− εu2

c ,
dB
dx =− εu2

c .

From this system of equations, we can compose an equa-
tion relative to the velocity u(x, t) = A(η , t)+B(ξ , t),{

du
u2 =− εdx

c ,
dx
dt = c

The first integral in x of the first equation of this system,
written as d

dx

( 1
u

)
= εdx

c , is

1
u
=

1
u0 +

εx
c

where u0 = u(η ,ξ )|ε=0 is the solution to the homogeneous
system (1), i.e., for ε = 0

Hence, we find the reference solution to the problem

u =
u0

1+ εx
c u0

This solution to the problem implies the following general
pattern in the approximation of a long pipeline: the solution
to the problem with allowance for friction is less than the
solution to the problem without considering the friction.

It is necessary to determine the value of u0 . Let us con-
sider the well-known solution of the Cauchy problem from
mathematical physics [9]:

u0(x, t) =
Φ(x+ ct)−Φ(x− ct)

2
+

1
2π

∫ x+ct

x−ct
Ψ(a)da (8)

where Φ and Ψ are the sought-for value and its time
derivative at .

To have zero sought-for value, it is necessary to assume
that

Φ(x) =

{
φ(x) f orx > 0
−φ(x) f orx < 0

and

Ψ(x) =

{
ψ(x) f orx > 0
−ψ(x) f orx < 0

In this case, u0(0, t) = 0 holds, and the condition for x = 0
can be used. In addition, due to the fulfillment of the follow-
ing conditions
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u0(x,0) = Φ(x) = φ(x),
∂u0(x,0

∂ t
= Ψ(x) = ψ(s)

for x > 0 , the solution satisfies two initial conditions.
Then, taking into account the velocity perturbation in sec-

tion , we can write the solution to the problem in the follow-
ing form

u0(x, t)=


µ(t− x

c )+
φ(x+ct)−φ(x−ct)

2 + 1
2a
∫ x+ct

x−ct ψ(a)da f or
x < tc
φ(x+ct)−φ(x−ct)

2 + 1
2a
∫ x+ct

x−ct ψ(a)da f or
x > tc

Substitution of value u0 into equation (9) leads to the fol-
lowing result for the gas velocity:

u(x, t)=



µ(t− x
c )+

1
2 [φ(x+ct)−φ(x−ct)]+ 1

2
∫ x+ct

x−ct ψ(a)da
1+ εx

c {µ(t−
x
c )+

1
2 [φ(x+ct)−φ(x−ct)]+ 1

2
∫ x+ct

x−ct ψ(a)da} f or

x≤ tc
1
2 [φ(x+ct)−φ(x−ct)]+ 1

2
∫ x+ct

x−ct ψ(a)da
1+ εx

c {
1
2 [φ(x+ct)−φ(x−ct)]+ 1

2
∫ x+ct

x−ct ψ(a)da} f or

x≤ tc

Thus, an analytical solution to the formulated problem is
obtained with respect to the hydrodynamic gas velocity.

This solution generalizes the well-known solution of the
Riemann problem taking into account the quadratic law of
resistance in a gas pipeline. Indeed, if we accept ε = 0 , then
we obtain the classical Riemann solution [9] on a one-way
wave.

III MATERIALS

The analytical solution obtained applies only to the gas
flow rate. To present the complete picture, it is necessary to
find a solution to the pressure problem, for which one can
turn to the numerical method.

The transition to discrete coordinates is performed so that
the pulse jump occurs at the calculated node. If the step in
space is h , then it takes time h/c for the wave to travel this
distance. Accordingly, the time step is τ = h/c. For exam-
ple, if h = 1m and c = 400m/c , then τ = h/c = 0.0025s .
This choice of discrete coordinate steps makes it possible to
determine the value of the pressure jump at the front of the
shock wave. To confirm this statement, let us turn to the next
problem.

Problem 1. We assume that before the onset of distur-
bances, the gas is at rest, and at t = 0 , at the inlet to the
section, the gas velocity instantly increases to U and then the

constant value of the velocity at the inlet is maintained. Ac-
cordingly, the initial pressure value and the pressure value in
the unperturbed region is P. In accordance with this, the ini-
tial value of the density and the value of gas density in the
unperturbed region is ρ0 = P/c2 . That is, ρ0 can be taken
for the characteristic density of gas. The auxiliary function is
ln ρ

ρ0
= ln ρc2

P . In the unperturbed calculation zone, we have
u = 0,ϕ = 0.

Let us assume that the impulse wave has reached node n
in time, which corresponds to the coordinate x = nh. Th gas
velocity at this point is

un
n =

U
1+ εnh

c U

At the nodes along x following the front of the disturbance,
the gas is at rest, in particular:

un
n+1 = 0

Then from the second equation of system (6) it follows

ϕn
n −ϕn−1

n

τ
=−

un
n+1−un

n

h
Here, we used the backward pattern in time, and the for-

ward pattern along the x coordinate. Since the gas is at rest,
the equations un

n+1 = 0,ϕn−1
n = 0 are appropriate. In this re-

gard, it follows from the last finite difference equation

ϕ
n
n =

τ

h
un

n

considering τ = h
c we obtain

ln
ρn

n

ρ0
= ln

Pn
n

P
=

un
n

c

By potentiating these relations, we obtain the density val-
ues

ρ
n
n = ρ0exp

(
U

c+ εnhU

)
and the pressure values

Pn
n = Pexp

(
U

c+ εnhU

)
at the disturbance front for the n-th time step.
Since x∗ = nh is the coordinate of the wave front, the last

relations can be written in the form of the following formulas

u(x∗) =
cU

c+ εx∗U

ρ(x∗) = ρ0exp
(

U
c+ εx∗U

)
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p(x∗) = Pexp
(

U
c+ εx∗U

)
From the last formula, it follows that the highest pressure

value is

p∗0 = Pexp(U/c)

that is, a jump by exp(U/c) times is expected at the begin-
ning of the process, and then, as the disturbance propagates,
the pressure jump decreases.

Taking into account the obtained value of ϕn
n at the distur-

bance front and the known values of un
i and un−1

i , let us turn
to the first equation of system (6), represented in a discrete
form:

ϕn
i+1−ϕn

i

h
=− 1

c2

[
un

i+1−un−1
i+1

τ
+ ε(un

i+1)
2

]
Here it was taken into account that the pressure change

occurs against the direction of propagation of the pulse wave.
The last finite difference equation implies the recurrence

formula

ϕ
n
i = ϕ

n
i+1 +

h
c2

[
un

i+1−un−1
i+1

τ
+ ε(un

i+1)
2

]
which allows calculating the values of the auxiliary func-

tion for i = n−1...0 .
The length of the calculated section is bounded and equals

to l = Nh . For n = N , when the wave reaches the end of the
calculated section, the velocity is

uN
N =

U
1+ εNh

c U

Accordingly, the limit value of the auxiliary function is

ϕ
N
N =

τ

h
uN

N

Using the above recurrent formula, we calculate the values
of the auxiliary function for i = N−1...0 .

For , i.e. when the wave leaves the computational domain,
the value of the auxiliary function at the computation bound-
ary can be found from the second equation of system (6),
presented in a discrete form:

For n > N , i.e. when the wave leaves the computational
domain, the value of the auxiliary function at the compu-
tation boundary can be found from the second equation of
system (6), presented in a discrete form:

−
un

N+1−un
N

h
=

ϕn
N−ϕ

n−1
N

τ

Here un
N = U

1+ ε(n+1)h
c U

Hence, we determine

ϕ
n
N = ϕ

n−1
N − τ

h
(un

N+1−un
N)

Further, realizing the recurrence formula, we calculate ϕn
i

for i = N−1...0.
Having calculated the values of un

i by the above formula
and the values of auxiliary function ϕn

i by the marching
method, the fields of the velocities and auxiliary function
are determined. The gas density in grid coordinates is de-
termined by the following formula

ρ
n
i = ρ0exp(ϕn

i )

and the gas pressure is determined according to the for-
mula

pn
i = c2

ρ
n
i .

If necessary, the mass flow rate of gas can be calculated by
the formula

Mn
i = f ρ

n
i un

i ,

where f = πD2/4 is the cross-sectional area of the
pipeline.

IV CALCULATION RESULTS

A computational experiment was conducted for a pipeline
with a diameter of 1 m, a resistance coefficient of 0.01 for
ε=0.005 m−1. We considered the case when the initial state
is rest; at the beginning of the section, the velocity increases
by a jump from 0 m/s to 20 m/s. The speed of sound is 378.21
m/s.

Fig. 1 shows the contours of the gas velocity in the coor-
dinate plane.

The inlet velocity jumps from 0 m/s to 20 m/s. The diag-
onal represents the pulse jump front; the lower right part is
the unperturbed zone. The velocity along the flow length de-
creases by a hyperbolic law. At the jump front, the velocity
values are: for tc/l=0.1 - 15.8177 m/s, for tc/l=0.4 - 9.7199
m/s, tc/l=0.1 - 5.4884 m/s.

Fig. 2 shows the isolines of the gas mass flow rate in the
coordinate plane tc/l=0.1 .

The diagonal represents the pulse jump front; the lower
right part is an unperturbed zone. For ct/l=0.01 , the mass
flow rate at the inlet to the section is 12.190 kg/s. For x=0.1
km it decreases to 11.264 kg/s. Then it decreases by a jump
to 0 kg/s. Over time, the inlet mass flow rate decreases: for
tc/l=0.50 - 11.844 kg/s, for tc/l=1.00 - 11.746 kg/s, and for
tc/l=2.00 - 11.700 m/s.

With distance, the gas mass flow rate decreases practically
by the hyperbolic law.
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Fig. 1: Isolines of the average gas velocity in plane (x, ct/l).

Fig. 2: Isolines of mass flow rate in plane (x, ct/l).

Fig. 3: Field of isobars in plane (x, ct/l).

Fig. 3 shows the field of isobars in plane (x,ct/l).
The calculations were conducted in steps h = 0.0001l and

τ = h
c . For visualization, we used every tenth of the length

and dimensionless time values. For tc/l=0.01 , the inlet
gas pressure was 0.11100 MPa, at the next step along the
length, it was 0.10529 MPa. Then, the pressure decreased
by a jump to 0.10000 MPa. For tc/l=0.1 , the inlet pressure
was 0.10993 MPa, and at the jump front it was 0.10427 MPa.
For tc/l=0.5 , the inlet pressure was 0.10785 MPa, and at the
jump front it was 0.10230 MPa. When the wave reached the
end of the section, the pressure at the front was 0.10146 MPa,
and at the inlet, it was 0.10696 MPa

Problem 2. The gas pipeline is at rest, i.e., the initial gas
velocity is zero. The initial pressure is p(0,0) = p00 . The
initial density distribution is homogeneous and, using an aux-
iliary function, it is expressed as ϕ(x,0) = 0. At the time
point t = 0, the gas velocity at the inlet to the gas pipeline
changes by the sinusoidal law

u(0, t) =U sin0.1πt

Let us investigate the dynamics of the impulse propagation
process.

We use the formula derived to calculate the velocity. To
calculate the pressure field, the value of the pressure in the
unperturbed zone is known.

To calculate the value of the auxiliary function at the dis-
turbance front, which left the calculation domain, we used
the approximation of the second equation of system (6).
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Fig. 4: Isolines of the average gas velocity in plane (x, ct/l) for
u(0, t) = 2sin0.1πtm/s.

ϕn
n −ϕn−1

n

τ
=−

un
n+1−un

n

h

Here for i > n, i.e. in the unperturbed zone, un
n+1 = 0.

Similarly, we can accept ϕn−1
n . So,

ϕ
n
n =

τ

h
un

n

Further, according to the values obtained by the formula

ϕ
n
i = ϕ

n
i+1 +

h
c2

[
un

i+1−un−1
i+1

τ
+ ε(un

i+1)
2

]
we calculate the values of ϕn

i for i = n−1...0 . For i ≤ N
we save the values ϕn

i of for future use, i.e. for calculating
and visualizing the calculation results for pressure and gas
mass flow rate.

Let us present the results of visualization in the Excel en-
vironment, obtained for ct/l = 3.

Fig. 4 shows the isolines of the gas velocity in the coor-
dinate plane (ct/l,x) . The upper left part of the figure cor-
responds to the zone at rest. In the blue stripes, the velocity
is less than 2 m/s. The main changes in velocity occur in the
inlet section at the maximum values of the inlet gas velocity.
The result is of periodic pattern.

The same considerations can be made regarding the mass
flow rate of gas (Fig. 5).

The main changes in pressure occur near the inlet section
at the maximum values of the inlet gas velocity (Fig. 6).
The highest pressure value is reached at the beginning of the
process. A significant change, relative to the given isolines,
is a non-uniform directional pressure decrease, especially in

Fig. 5: Isolines of the average gas velocity in plane (x, ct/l) for
u(0, t) = 2sin0.1πtm/s.

Fig. 6: Isolines of the average gas velocity in plane (x, ct/l) for
u(0, t) = 2sin0.1πtm/s.

the first period, where the pressure curves turned out to be
asymmetric.

V ANALYSIS AND CONCLUSIONS

The paper proposes a mixed method for studying the wave
motion of gas in a semi-infinite pipeline. In contrast to the
known problems, the propagation of a one-way wave is con-
sidered. Therefore, the conditions for the unambiguity of the
solution to the gas velocity problem are taken in the form of
one boundary and two initial conditions.

With the introduction of an auxiliary function in the form
of the natural logarithm of the reduced density and with the
use of gage functions, the equations are presented in a sim-
pler form with respect to the reference solution of the prob-
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lem. The reference solution was refined by reducing it to
the Riemann problem, considering the quadratic law of re-
sistance; an exact solution to the problem with respect to the
gas flow rate was obtained.

To determine the pressure, proportional to the gas density,
a finite-difference method was used. The time step was de-
fined as the fraction of the length step to the velocity of small
pressure perturbations. The marching method was used to
determine the field of velocity and auxiliary function. Us-
ing the gas velocity value, according to the new form of the
momentum conservation equation, the pressure values at the
front of the pulse jump at the beginning of the process and
during the pulse propagation were determined. Further, the
pressure distribution in the computational domain was de-
termined by recurrent calculation against the direction of an
impulse propagation.

The check showed that the proposed mixed analytical-
numerical method could be applied to study some problems
of the pulse wave propagation in gas pipelines.

One of these problems is the problem of starting up a gas
pipeline with a constant gas velocity at the inlet. It was
shown that in the perturbed zone the gas velocity decreases
by the hyperbolic law. At the front of the impulse, the gas
velocity decreases by a jump to a state of rest. A jump-like
increase in pressure at the inlet to the gas pipeline was re-
vealed, the cause of which is an abrupt increase in velocity at
the beginning of the process. Subsequently, the inlet pressure
drops since the gas mass involved to the motion increases. It
was found that in the chosen system of discrete coordinates
the curves of the isobars and the jump front intersect at a right
angle.

The problem of the propagation of a sinusoidal non-
negative gas perturbation in a gas medium at rest was consid-
ered. In the perturbed zone, the gas velocity is of a periodic
pattern. A temporary decrease is observed in the pressure
curves in the perturbed zone.
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