INVARIANT MEASURE OF CRITICAL CIRCLE HOMEOMORPHISMS WITH COUNTABLE NUMBER OF BREAKS

Authors

  • Utkir Safarov Turin Polytechnic Uiniversity in Tashkent

Keywords:

circle homeomorphism, rotation number, invariant measure, critical point, break point.

Abstract

It is proved that invariant measures of P -homeomorphisms of a circle with countable
many break points and with single critical point, and an irrational rotation number are
singular with respect to the Lebesgue measure on the circle.

References

A. Denjoy: Sur les courbes de nies par les equations di erentielles a la surface du tore.

J. Math. Pures Appl., 11, 333-375 (1932).

Y. Katznelson and D. Ornstein: The absolute continuity of the conjugation of certain

di eomorphisms of the circle. Ergod. Theor. Dyn. Syst., 9, 681-690, (1989).

K.M. Khanin and Ya.G. Sinai: Smoothness of conjugacies of di eomorphisms of the

circle with rotations. Russ. Math. Surv., 44, 69-99, (1989), translation of Usp. Mat.

Nauk, 44, 57-82, (1989).

M. Herman: Sur la conjugaison di erentiable des di eomorphismes du cercle a des

rotations. Inst. Hautes Etudes Sci. Publ. Math., 49, 225-234 (1979).

A.A. Dzhalilov and K.M. Khanin: On invariant measure for homeomorphisms of a

circle with a point of break., Funct. Anal. Appl., 32, (3) 153-161 (1998).

A.A. Dzhalilov and I. Liousse: Circle homeomorphisms with two break points. Nonlin-

earity, 19, 1951-1968 (2006).

A.A. Dzhalilov, I. Liousse and D. Mayer: Singular measures of piecewise smooth circle

homeomorphisms with two break points. Discrete and continuous dynamical systems,

, (2), 381-403 (2009).

A.A. Dzhalilov, D. Mayer and U.A. Safarov: Piecwise-smooth circle homeomorphisms

with several break points. Izvestiya RAN: Ser. Mat. 76:1, 95-113, translation of

Izvestiya: Mathematics 76:1, 95-113, (2012).

Teplinsky A.: A circle di eomorphism with breaks that is absolutely continuously

linearizable. Ergodic Theory and Dynamical Systems, 38, N1, 371{383, (2018).

J. Graczyk, G. Swiatek.: Singular measure in circle dynamics. Commun. Math. Phys.

, 213-230, (1993).

P. Guarino, E. de Faria: There are no - nite absolutely continuous invariant mea-

sures for multicritical circle maps. Nonlinearity, 34, N10, 6727{351, (2021).

U.A. Safarov: Invariant measure of circle maps with mixed type of singularities.

Izvestiya vuzov, Mathematics, N7, 71{84, (2023).

Downloads

Published

2024-03-30

How to Cite

Safarov, U. (2024). INVARIANT MEASURE OF CRITICAL CIRCLE HOMEOMORPHISMS WITH COUNTABLE NUMBER OF BREAKS. Acta of Turin Polytechnic University in Tashkent, 14(1), 15–17. Retrieved from https://acta.polito.uz/index.php/journal/article/view/266