Design and Structural Performance of Composite Wind Turbine Blade using Finite Element Method
Composite Wind Turbine Blade
Keywords:
wind turbine blade; structural design; composite materials; finite element methodAbstract
In this paper, a 9-meter-long composite wind turbine blade is designed on the basis of blade element theory (BET), and finite element analysis (FEA) is performed using commercial ANSYS software. Various design parameters for a blade such as material properties, laminate lay-up, skin thickness, ply orientation, internal spar etc., are determined iteratively to get optimal blade structural design. NREL S-series airfoils with different chord thickness are used along current blade cross-sections. Glass fibers are traditionally being used as a basis material for wind turbine blade manufacturing. This work also addresses the advanced use of carbon fiber in the spar cap region of the blade as an alternative material. Numerical calculations are run to simulate the static and dynamic characteristics, as well as an Eigen value buckling characteristics in order to confirm the blade to be sound and stable under various load conditions. It is observed that there is a substantial weight reduction and structural strength with the use of cost-effective carbon/glass hybrid material.
References
. Locke J., Valencia U., Ishikawa K. Design studies for twist-coupled wind turbine blades. 41st Aerospace Sciences Meeting and Exhibition, WIND2003-1043, pp. 324-331. https://doi.org/10.1115/WIND2003-1043
. Griffin D, Ashwill T.D. Alternative composite materials for megawatt-scale wind turbine blades: design considerations and recommended testing. Journal of Solar Energy Engineering, 2003, 125(4): 515-521. https://doi.org/10.1115/1.1629750
. Ong C.H., Tsai S.W. The use of carbon fibers in wind turbine blade design: A SERI-8 blade example. SAND2000-0478, Technical Report. https://doi.org/10.2172/752054
. Berry D. Design of 9-meter carbon-fiberglass prototype blades: CX-100 and TX-100 SAND2007-0201, Technical Report. https://doi.org/10.2172/921145
. Veers P.S., Ashwill T.D., Sutherland H.J., Laird D.L., Lobitz D.W., Griffinn D.A., Mandell J.F., Musial W.D., Jackson K., Zuteck M., Miravete A., Tsai S.W., Ricmond J.L. Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy, 2003, (6):245–259. https://doi.org/10.1002/we.90
. Kong C., Bang J., Sugiyama Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy, 2005, (30):2101-2114. https://doi.org/10.1016/j.energy.2004.08.016
. Jensen F.M., Falzon B.G., Ankersen J., Stang H. Structural testing and numerical simulation of a 34 m composite wind turbine blade. Composite Structures, 2006, (76):52–61. https://doi.org/10.1016/j.compstruct.2006.06.008
. Jureczko M., Pawlak M., Mezyk A. Optimization of wind turbine blades. Journal of Materials Processing Technology, 2005, (167):463–471. https://doi.org/10.1016/j.jmatprotec.2005.06.055
. Tangler J., Somers D. NREL airfoil families for HAWTS. NREL TP-442-7109, 1995, Technical Report. https://doi.org/10.2172/10106095
. Ladean M.R., Douglas C.S., John M.F., David C.C., Donald R.A., Daniel V.R. Analysis of a composite blade design for the AOC 15/50 wind turbine using a FEM. SAND2001-1441, 2001, Technical Report. https://doi.org/10.2172/782707
. Griffin D.A. Blade system design study Part I-II. SAND 2009-0686, 2009, Technical Report. https://doi.org/10.2172/959110
. Griffin D.A., Zuteck M.D. Scaling of composite wind turbine blades for rotors of 80 to120 meter diameter. Journal of Solar Energy Engineering, 2001, 123(4): 310-318. https://doi.org/10.1115/1.1413215
. Joshua P., Daniel L., Todd D.G. Modeling and testing of 9m research blades. 44th AIAA Aerospace Sciences Meeting and Exhibition, 2006, AIAA2006-1199. https://doi.org/10.2514/6.2006-1199