A remark on Gibbs distributions associated by critical circle maps
Keywords:
critical circle map, critical point, rotation number, invariant measure, symbolic dynamics, Gibbs measureAbstract
In present work we investigate circle maps $f$ with one critical point and irrational rotation number $\rho_{f}.$ It is well known that each such map $f$ has a unique probability invariant measure $\mu_{f}$ and it is singular w.r.t Lebesque measure on the circle. J. Yoccoz proved that if $f\in C^[2]$ then $f$ is topoligically congugated by linear rotation to angle $\rho_{f}.$ In the space of critical maps with "Golden mean " rotation number $\rho=\frac{\sqt5}-1}{2}$ the renormalization transformation has unique nontrivial fixed point $f_{0}$ . For the map $f_{0}$ can be constructed the thermodynamic formalism. We prove that on the space one sided sequences there exist unique Gibbs measure corresponding to the map $f_{0}$ .
References
Ostlund S., Rand D., Sethna J., Siggia E.D. Universal properties of the transition from quasiperiodicity to chaos in dissipative systems // Physica. 1983. Vol. D8, No 3. P. 303.
Ruelle, D.: Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics. 2nd edition. Cambridge Mathematical Library, Cambridge University Press, 2004
Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. 2nd revised edition, edited by J.-R. Chazottes, LNM 490, Springer, 2008
Sinai, Ja. G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk. 27, 21—64 (1972). English transl.: Russian Math. Surveys 27, 21–69 (1972).
A.Avila, On rigidity of critical circle maps, Bull. Math. Soc., 44(2013), no. 4, 611–619. DOI: 10.1007/s00574-013-0027-5
I.P.Cornfeld, S.V.Fomin, Ya.G.Sinai, Ergodic Theory, Springer Verlag, Berlin, 1982.
E. de Faria, W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc. (JEMS), 1(1999), no. 4, 339–392.
J.Graczyk, G.Swiatek, Singular measures in circle dynamics, Commun. Math. Phys., 157(1993), 213–230.
P.Guarino, M.Martens, W. de Melo, Rigidity of critical circle maps, Duke Math. J., 167(2018), 2125–2188. DOI: 10.1215/00127094-2018-0017
A. Dzhalilov, Limiting laws for entrance times for critical mappings of a circle., TMF, 138 (2), 225–245 (2004). Theoret. and Math. Phys., 138 (2), 190–207 (2004).
D. Ruelle, Thermodynamic Formalism, The mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison- Wesley Publishing Comp., Reading Mass., 1978.
E. De Faria, W.M. de Melo, Rigidity of critical circle maps I., J. Eur. Math. Soc. 1, 339–392 (1999).
W.M. de Melo, S. van Strien, One-dimensional dynamics, Springer Verlag, Berlin, p. 605 (1993).
E. B. Vul, Y. G. Sinai, and K. M. Khanin. Feigenbaum universality and the thermodynamic formalism. Russian Math. Surveys, 39 (3), 1–40, (1984). English Translation.