ON DYNAMICS OF SOME DIFFERENCE EQUATIONS
Keywords:
difference equation, power series, solution of difference equation, asymptotic behaviourAbstract
In present work we investigate the difference equations $x_{n+1}=f(x_{n}),\,\,n\geq0.$
We consider the case when the function $f$ is power series. It is proved that under some condition to $f$
the solution of difference equation asymptotically equivalent to $bn^{\alpha},\,\alpha>0,$ as $n\rightarrow \infty.$
References
Lothar Berg., Asymptotische Einschliebung von Losungenexpliziter Operatordifferentialgleichungen.MathematischeNachrichten.V. 56, Issue 1-6, p. 1969-173. (1973)
Kolmogorov A. N., Fomin S.V. Introductory Real Analysis.Dover Publications. INC, New York (1975)
Cushing, J., and S. Henson, Global dynamics of some peri-odically forced, monotone difference equations, J. DifferenceEqu. Appl. 7(6), 859-872, (2001)
Cushing, J., Cycle chains and the LPA model, J. DifferenceEqu. Appl. 9, 655-670. (2003)
Saber Elaydi., An Introduction to Difference Equations. Undergraduate Texts in Mathematics. Springer. (2004)