ANALYSIS OF THE RECOVERY SYSTEM BRAKING ELECTRIC VEHICLES
Keywords:
Electric car, regenerative system, brake system, ecology, transport.Abstract
Electrically powered vehicles are a relatively new industry in the automotive world today. The first electric cars, which were created in the early stages of development in the automotive industry, had much improved characteristics in relation to cars running on internal combustion engines. Over the years, the development of technologies for producing fuel for internal combustion engines has become significantly more affordable and much cheaper, as a result of which the need for electric vehicles has significantly decreased. At the beginning of the 21st century, environmental degradation due to exhaust emissions from internal combustion engines of cars gave a new impetus to the development of electric vehicles [1].This article is devoted to the analysis and evaluation of the use, as well as the effectiveness of the regenerative braking system of electric vehicles.
References
Umerov F., Inoyatkhodjaev J., Asanov S. Prospects for the development of electric vehicles in Uzbekistan. Acta of Turin Polytechnic University in Tashkent, 2022, 30, №2 – С. 65-68.
Inoyatkhodjaev J., Umerov F., Asanov S. Method for sizing an electric drive of small class electric vehicles. Universum: технические науки Российская Федерация, 2022, ООО «МЦНО» выпуск 4(109),
Ситовский О.Ф., Дембицкий В.М. Электродинамическое торможение гибридного транспортного средства на дорогах с низким коэффициентом сцепления. Автомобильный транспорт. – 2013. – №33. – С.13-18.
Кашуба А. М. Рекуперация кинетической энергии в автомобилях с гибридной силовой установкой. Науков нотатки. – 2011. – Вип. 35. – С. 93-95.
Ле В.Н., Дам П.Х., Нгуен Ч.Х., Харитончик С.В., Кусяк В.А. Исследование стратегии рекуперативного торможения электромобилей. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023, 66 (2):105-123.
Юдина А.Е., Киснеева Л.Н. Режим Рекуперации в электромобилях. Мировые тенденции развития науки и техники: пути совершенствования Москва, – 2022. – №33. – С.275-276.
Liu H., Lei Y., Fu Y., Li X. Multi-Objective Optimization Study of Regenerative Braking Control Strategy for Range-Extended Electric Vehicle. School of Automotive Engineering, Jilin University, Changchun 130022, China – Appl. Sci. 2020, 10 (5).
Roumila Z., Rekioua D., Rekioua T. Energy management based fuzzy logic controller of hybrid system wind/photovoltaic/diesel with storage battery. Int. J. Hydrog. Energy 2017, 42, 19525–19535.
Aksjonov A., Vodovozov V., Augsburg K., Petlenkov E., Design of regenerative anti-lock braking system controller for 4 in-wheel-motor drive electric vehicle with road surface estimation. Int. J. Automot. Technol. 2018, 19, 727–742.
Maia R., Silva M., Araújo R., Nunes U. Electrical vehicle modeling: A fuzzy logic model for regenerative braking. Expert Syst. Appl. 2015, 42, 8504–8519.
Topalov A.V., Oniz Y., Kayacan E., Kaynak O. Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing 2011, 74, 1883–1893.
Правила ЕЭК ООН № 13 «Единообразные предписания, касающиеся официального утверждения транспортных средств категорий М, N и О в отношении торможения».
Umerov F.Sh., Juraboev A.Z. Analysis of the block diagram of the traction drive and the stages of calculation of a mechatronically controlled hybrid vehicle. Scientific journal of the Tashkent State Technical University (TSTU) named after Islam Karimov, "Yulduzlari Technique", Tashkent 2022. No. 1 - P. 29-33.
Du J., Ouyang D. Progress of Chinese electric vehicles industrialization in 2015: A review. Appl. Energy 2016, 188, 529–546.
Chen B., Wu Y., Tsai H. Design and analysis of power management strategy for range extended electric vehicle using dynamic programming. Appl. Energy 2014, 113, 1764–1774.
Ma H., Balthasar F., Tait N., Riera-Palou X., Harrison A. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy. 2012, 44, 160–173. [Google Scholar] [CrossRef]
Qiu C., Wang G. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles. Energy Convers. Manag. 2016, 119, 389–398.
Lv C., Zhang J., Li Y., Yuan Y. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers. Energy Convers. Manag. 2015, 106, 520–529.
Guo J., Jian, X., Lin G. Performance evaluation of an anti-lock braking system for electric vehicle with a fuzzy sliding mode controller. Energies 2014, 7, 6459–6476.
Kumar C.N., Subramanian S.C. Cooperative control of regenerative braking and friction braking for a hybrid electric vehicle. Proc. Inst. Mech. Eng. J. Automob. Eng. 2015, 230, 103–116.