On Hitting Times of Circle Maps with Generalized Dynamical Partitions
Keywords:
circle homeomorphisms, break point, rotation number, invariant measure, return time, hitting timeAbstract
In present work we study the hitting times for circle homeomorphisms with one break point and universal renormalization properties. Consider the set $X(\rho) $ of all orientation preserving circle homeomorphisms $T\in C^{2+\varepsilon}(S^{1}\setminus\{x_{b}\}),\,\,\,\varepsilon>0,$ with one break point $ x_{b}$ and irrational rotation number $\rho_{T}=\frac{-k+\sqrt{{{k}^{2}}+4}}{2},\,\,k\ge 1.$
For each $n\geq1$ we define $c_{n}:=c_{n}(c)$ such that $\mu([x_{b},c_{n}])=c\cdot\mu([x_{b},T^{q_{n}}(x_{b})]),$ where $q_{n}$
are first return times of $T.$ Denote by $E_{n,c}(x)$ first hitting times of $x$ to interval $[x_{b},c_{n}]. $ Consider the rescaled first hitting time $\overline{E}_{n,c}:=\frac{1}{q_{n+1}}E_{n,c}(x)$. We study convergence in law of random variables $\overline{E}_{n,c}(x).$ We show that the limit distribution is singular w.r.t. Lebesgue measure.
References
Pitskel B. Poisson limit law for markov chains. Ergodic Theory Dynamical Systems, V. 11, pages 501–513, 1991.
Dzhalilov A. A. Limiting laws for entrance times of critical mappings of a circle. Theoret. and Math. Phys., 138:2, pages 190–207, 2004.
J. Belair D. Scagliotti D. Gordon M. Courtemanche, L. Glass. A circle map in a human heart. Physica D: Nonlinear Phenomena, Volume 40, Issue 3, pages 299–310, 1989.
Vul E. B. Khanin K. M. Circle homeomorphisms with weak discontinuities. Advances in Sov. Math, 3, page 57–98, 1991.
Safarov U. Dzhalilov A., Mayer D. Piecewise-smooth circle homeomorphisms with several break points. Izvestiya RAN. Ser. Mat., V. 76, No. 1, pages 95–113, 2012.
Khanin K.M. Dzhalilov A.A. On an invariant measure for homeomorphisms of a circle with a point of break. Funct. Anal. Its Appl., No. 32, pages 153–161, 1998.
Karimov J.J. On continuity of limit distribution function for rescaled hitting times. Uzbek Mathematical Journal, No. 4, pages 78–88, 2019.
Dzhalilov A.A. Karimov J.J. The entrance times for circle maps with a break the entrance times for circle maps with a break. Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3: Iss. 2, page Article 10, 2020.
Dzhalilov A. A. Karimov J. J. The thermodynamic formalism and exponents of singularity of invariant mea-sure of circle maps with a single break. Bulletin of Ud-murt University. Mathematics, Mechanics, Computer Science, pages 343–366, 2020.
Dzhalilov A. A. Karimov J. J. On exponents of probability invariant measure of circle maps with a break point. AIP Conference Proceedings 2781, pages 020059–1–020059–6, 2023.
De Faria E. Coelho Z. Limit laws of entrance times for homeomorphisms. Israel J. Math., 93, pages 93–112, 1996.
Sinai Ya.G. Topics in Ergodic Theory. 1994.