THE THERMODYNAMIC FORMALISM FOR CIRCLE MAPS WITH ALGEBRAIC ROTATION NUMBER
Keywords:
circle homeomorphism, break point, rotation number, invariant measure, symbolic dynamics, shift map, thermodynamic formalism, renormalization transformationAbstract
In present paper we study the orientation preserving circle homeomorphisms with singularity of break type.
Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with
one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives
at the point $x_{b} $ are strictly positive.
Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction
has a form $ \rho:=\omega_{k} = [k,\,k,\ldots,k,\ldots] = \frac{-k + \sqrt {{{k} ^ {2}} + 4}} {2}, \, \, k \ge 1 .$
E. Vul and K. Khanin in \cite{VKh} showed that the renormalization transformation on the space of such circle
maps has unique periodic point $( F_{i},G_{i}),\,\,i=1,2$ with period two. Moreover,
$ F_{i}$ and $G_{i})$ are fractional linear maps.
We denote by $T_{i},\,i=1,2$ the circle homeomorphisms associated by pair $(F_{i},G_{i}).$
Let $B(T_{i}),\,i=1,2$ the set of all circle maps which are $C^{1}$ conjugated to $T_{i},\,i=1,2.$
We build a thermodynamic formalism for all maps of $B(T_{i}),\,i=1,2.$
References
bibitem{Ar}
Arnol'd~V.,I@.
Small denominators. I. Mappings of the circumference onto itself,
{it Am. Math. Soc., Transl., II.~Ser.}, %название журнала?
,
vol.~46,
pp.~213--284.
%2
bibitem{Bow}
Bowen~R@.
{it Metody simvolicheskoi dinamiki}
(Methods of symbolic dynamics),
Moscow: Mir, 1979.
%3
bibitem{DzKh}
Dzhalilov~A.,A., Khanin~K.,M@.
On an invariant measure for homeomorphisms of a circle with a point of break,
{it Functional Analysis and Its Applications},
,
vol.~32,
no.~3,
pp.~153--161.
https://doi.org/10.4213/faa419
%5
bibitem{Dzh2003}
Dzhalilov~A.,A@.
Thermodynamic formalism and singular invariant measures for critical circle maps,
{it Theoretical and Mathematical Physics},
,
vol.~134,
no.~2,
pp.~166--180.
https://doi.org/10.4213/tmf150
%6
bibitem{Dzh2004}
Dzhalilov~A.,A@.
Limiting laws for entrance times of critical mappings of a circle,
{it Theoretical and Mathematical Physics},
,
vol.~138,
no.~2,
pp.~190--207.
bibitem{DzhKar} Dzhalilov A.A., Karimov J.J. The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break. Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2020, vol. 30, issue 3, pp. 343-366.
https://doi.org/10.35634/vm200301
%7 книга, есть перевод с doi
bibitem{KSF}
Cornfeld~I.,P., Fomin~S.,V., Sinai~Ya.,G@.
{it Ergodic theory},
New York: Springer, 1982.
%C.~384.
%https://doi.org/10.1007/978-1-4615-6927-5 doi от перевода
%8
bibitem{SKh}
Sinai~Ya.,G., Khanin~K.,M@.
Smoothness of conjugacies of diffeomorphisms of the circle with rotations,
{it Russian Mathematical Surveys},
,
vol.~44,
no.~1,
pp.~69--99.
%9
bibitem{CS}
Cunha~K., Smania~D@.
Rigidity for piecewise smooth homeomorphisms on the circle~//
Advances in Mathematics.
Vol.~250.
P.~193--226.
https://doi.org/10.1016/j.aim.2013.09.017
%10
bibitem{DE1932}
Denjoy~A@.
Sur les courbes d{'{e}}finies par les {'{e}}quations diff{'{e}}rentielles {`{a}} la surface du tore~//
Journal de Math{'{e}}matiques Pures et Appliqu{'{e}}es. % 9e s{'{e}}rie.
%Math. Pures et Appl.
Vol.~11.
P.~333--376.
%11
bibitem{deFdeM}
de Faria~E., de Melo~W@.
Rigidity of critical circle mappings I~//
Journal of the European Mathematical Society.
Vol.~1.
Issue~4.
P.~339--392.
https://doi.org/10.1007/s100970050011
%12
bibitem{Her}
Herman~M.,R@.
Sur la conjugaison diff{'{e}}rentiable des diff{'{e}}omorphismes du cercle a des rotations~//
Publications Math{'{e}}matiques de l'Institut des Hautes {'{E}}tudes Scientifiques.
%Publications Mathematiques de l'IHES,
Vol.~49.
Issue~1.
mbox{P.~5--233}.
https://doi.org/10.1007/BF02684798
%http://www.numdam.org/item/PMIHES19794950 %page not found
%13
bibitem{KO}
Katznelson~Y., Ornstein~D@.
The differentiability of the conjugation of certain diffeomorphisms of the circle~//
Ergodic Theory and Dynamical Systems.
Vol.~9.
Issue~4.
P.~643--680.
https://doi.org/10.1017/S0143385700005277
%14
bibitem{KhnKhm}
Khanin~K.,M., Khmelev~D@.
Renormalizations and rigidity theory for circle homeomorphisms with singularities of break type~//
Communications in Mathematical Physics.
Vol.~235.
No.~1.
mbox{P.~69--124}.
https://doi.org/10.1007/s00220-003-0809-5
%15
bibitem{KhKo}
Khanin~K., Koci{'{c}}~S@.
Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks~//
Geometric and Functional Analysis.
Vol.~24.
Issue~6.
P.~2002--2028.
https://doi.org/10.1007/s00039-014-0309-0
%16
bibitem{MMY}
Marmi~S., Moussa~P., Yoccoz~J.-C@.
Linearization of generalized interval exchange maps~//
Annals of Mathematics.
Vol.~176.
No.~3.
P.~1583--1646.
http://doi.org/10.4007/annals.2012.176.3.5
%17
bibitem{deMvSt}
de~Melo~W., van~Strien~S@.
One-dimensional dynamics.
Berlin: Springer, 1993.
%P. 605.
https://doi.org/10.1007/978-3-642-78043-1
%18
bibitem{Rue}
Ruelle~D@.
Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics.
Cambridge: Cambridge University Press, 2004.
https://doi.org/10.1017/CBO9780511617546
%19
bibitem{Sin1967}
Sinai~Ya.,G@.
Gibbs measures in ergodic theory,
{it Russian Mathematical Surveys},
,
vol.~27,
no.~4,
pp.~21--69.
bibitem{VSK}
Vul~E.,B., Sinai~Ya.,G., Khanin~K.,M@.
Feigenbaum universality and the thermodynamic formalism~//
Russian Mathematical Surveys.
Vol.~39.
No.~3.
P.~1--40.
https://doi.org/10.1070/RM1984v039n03ABEH003162
%21 что это
bibitem{VKh}
Vul~E.,B., Khanin~K.,M@.
Circle homeomorphisms with weak discontinuities~//
Advances in Sov. Math.
Vol.~3.
P.~57--98.