Synthesis of copper nanoparticles using ultrasound and magnetic field

Authors

  • Abdurasul Yarbekov Turin Polytechnic University in Tashkent

Keywords:

synthesis, copper nanoparticles, ultrasound and mag-netic field, morphology of the nanoparticles

Abstract

In this paper, copper nanoparticles were synthesized us-ing a chemical method. A constant magnetic field of 1.25 T and ultrasound were used to synthesize copper nanoparticles, and their effect on the properties and morphology of the nanoparticles was studied. The synthesized nanoparticles were characterized using X-ray diffraction (XRD) and SEM analysis. It has been proven that ascorbic acid has a good stabilizing effect, protecting copper nanoparticles from oxidation for a long period. The presence of polyvinylpyrrolidone (PVP) polymer effectively stabilizes particles during the synthesis process due to the dispersive effect of ultra-sound. This stabilizing effect of PVP helps to achieve a constant particle size, preventing excessive agglomeration and promoting stable particle growth. The size of nanoparticles synthesized us-ing a magnetic field is significantly smaller than without using a magnetic field.

References

Jeong, S., Woo, K., Kim, D., Lim, S., Kim, J.S., Shin, H., Xia, Y., Moon, J.: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. J. Adv. Funct. Mater. 18, 679–686 (2008)

Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

Han, K.N., Kim, N.S.: Challenges and opportunities in direct write technology using nano-metal particles. KONA Powder Part J. 27, 73 (2009)

Mott, D., Galkowski, J., Wang, L., Luo, J., Zhong, C.J.: Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740–5745 (2007)

Chen, S., Sommers, J.M.: Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J. Phys. Chem. B. 105, 8816–8820 (2001)

Khanna, P.K., Gaikwad, S., Adhyapak, P.V., Singh, N., Marimuthu, R.: Synthesis and characterization of copper nanoparticles. Mater. Lett. 61, 4711–4714 (2007)

Kobayashi, Y., Ishida, S., Ihara, K., Yasuda, Y., Morita, T., Yamada, S.: Synthesis of metallic copper nanoparticles coated with polypyrrole. Coll. Polym. Sci. 287, 877–880 (2009)

Liu, Z., Bando, Y.: A novel method for preparing copper nanorods and nanowires. Adv. Mater. 15, 303–305 (2003)

Lai D., Liu T., Jiang G., Chen G. Synthesis of Highly Stable Dispersions of Copper Nanoparticles Using Sodium Hypophosphite. J. Appl. Polym. Sci. 2013:1443–1449. doi: 10.1002/app.38109.

Wang Y., Asefa T. Poly(allylamine)-Stabilized Colloidal Copper Nanoparticles: Synthesis, Morphology, and Their Surface-Enhanced Raman Scattering Properties. Langmuir. 2010;26:7469–7474. doi: 10.1021/la904199f.

Wang Y., Biradar A.V., Wang G., Sharma K.K., Duncan C.T., Rangan S., Asefa T. Controlled Synthesis of Water-Dispersible Faceted Crystalline Copper Nanoparticles and Their Catalytic Properties. Chem. Eur. J. 2010;16:10735–10743. doi: 10.1002/chem.201000354.

Shahmiri M., Ibrahim N.A., Zainuddin N., Asim N., Bakhtyar B., Zaharim A., Sopian K. Effect of pH on the Synthesis of CuO Nanosheets by Quick Precipitation Method. WSEAS Trans. Environ. Dev. 2013;2:137–146.

Shu X., Feng J., Liao J., Zhang D., Peng R., Shi Q., Xie X. Amorphous carbon-coated nano-copper particles: Novel synthesis by Sol–Gel and carbothermal reduction method and extensive characterization. J. Alloys Compd. 2020;848:156556. doi: 10.1016/j.jallcom.2020.156556.

Hina Khalid, S. Shamaila*, N. Zafar Synthesis of copper nanoparticles by chemical reduction method Sci.Int.(Lahore),27(4),3085-3088,2015

, Orozmatova G.T., Satyvaldiev A.S., Emil O.Synthesis of copper nanoparticles in the presence of sodium dodecyl sulfate. // Science, technology and education. – Ivanovo: «Olympus», 2016. – № 3 (21). – pp. 67-70.

Avchinnikova E.A., Vorob'yova S.A. Synthesis and properties of copper nanoparticles obtained as a result of two-stage reduction. // Belluten of BSU [Vestnik BGU], Ser. 2, – Minsk: 2015. – № 1. – pp. 32-37.

Avchinnikova E.A., Vorob'yova S.A. (2013), Syntheses and characteristic nanoparticles of coppers, stabilized polyethylene glycol [Sintez I svojstva nanochastic medi, stabilizirovannyh poliehtilenglikolem], Belluten of BSU [Vestnik BGU], Ser. 2, 2013. – № 3. – pp. 12-16.

Saikova S.V., Murasheva K.S., Vorobyev S.A., Kochmarev K.Yu., Karimov E.E., Eremina N.D., Mikhlin Yu.L. Synthesis of highly concentrated hydrosols of copper nanoparticles through reduction with ascorbic acid in the presence of gelatose. // Chemistry for Sustainable Development. – Novosibirsk: 2013. – №4. – pp. 425-431.

Murasheva K.S., Kochmarev K.Y., Voro b'ev S.A., Saikova S.V. Preparation and study of concentrated hydrosols of copper nanoparticles using of weak reducing agents. // Russian Journal of General Chemistry. 2015. Т. 85. – № 8. – pp. 1793-1800.

Tausarova B.R., Rakhimova S.M.,Shaikhova J.E., Biekenov B. Synthesis of copper nanoparticles and their application for modification of cellulose materials. // Design, technology and innovation in the textile and light industry (INNOVATION-2016). – Moscow: 2016. – pp. 232-235.

Kudriavtseva E.V., Burinskaya A.A. Obtaining stable copper nanoparticles using non-toxic reducing agents. / Innovative directions in the development of science about polymer fibrous and composite materials: abstracts of the international scientific conference. / St. Petersburg: "St. Petersburg State University of Industrial Technologies and Design", 2020. – p.49.

Yu Wei, Xie Huaqing, Chen Lifei, Li Yang, Zhang Chen Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents. // Nanoscale Res Lett. – 2009 – № 4. – рp. 465-470.

Khan Ayesha, Rashid Audil, Younas Rafia, Chong Ren. A chemical reduction approach to the synthesis of copper nanoparticles. // Int Nano Lett. – 2016. – № 6. – рp. 21-26.

Nosovskaya E.A., Kudriavtseva E.V., Burinskaya A.A. Eco-Friendly Way Of Synthesis Of Copper Nanoparticles. German International Journal of Modern Science №10, 2021

K. Tokarek, J.L. Hueso, P. Kuśtrowski, G. Stochel, A. Kyzioł. European Journal of Inorganic Chemistry. 2013. Vol.2013. No.28. P.4940-4947.

X. Zhang, H. Yin, H. Hu, Q. Yu, A. Wang, X. Cheng. Effects of various polyoxyethylene sorbitan monooils (TWEEENS) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles. Materials Research Bulletin. 2006. Vol.41. No.11. P.2041-2048.

Y. Wang, P. Chen, M. Liu. Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology. 2006. Vol.17. No.24. P.6000-6006.

M. Biçer, I. Şişman. Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technology. 2010. Vol.198. No.2. P.279-284.

X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science. 2006. Vol.253. No.5. P.2727-2732.

M. Valodkar, R.N. Jadeja, M.C. Thounaojam, R.V. Devkar, S. Thakore. Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Materials Chemistry and Physics. 2011. Vol.128. No.1-2. P.83-89.

J. Díaz-Visurraga, C. Daza, C. Pozo, A. Becerra, von C. Plessing, A. García. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. International Journal of Nanomedicine. 2012. Vol.128. P.3597-3612.

Солдатенко Е. М., Доронин С. Ю., Чернова Р. К. Химические способы получения наночастиц меди. Butlerov Communications. 2014. Vol.37. No.2. P.103-113.

Nataly Silva, Sara Ramírez, Isaac Díaz Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles. Materials 2019, 12, 804; doi:10.3390/ma12050804

А. Баранчиков и др. Сонохимический синтез неорганических материалов. Успехи химии 76 (2) 2007

Aharon Gedanken. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry 11 (2004) 47–55

Mehieddine Bouatrous and et all. Sonochemistry synthesis of zinc silicate ceramic nanoparticles and their characterization. DOI: https://doi.org/10.21203/rs.3.rs-3235393/v1

Mehieddine Bouatrous and et all. A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations. Ceramics International 46 (2020) 12618–12625

Н. А. Булычев Получение наноразмерных материалов в плазменных разрядах и ультразвуковой кавитации. ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 59 № 4 2021

Mahdieh Razaghianpour, Amir Hossein Sari, Elham Darabi. Effect of Magnetic and Electric Fields on Synthesis of Cu Nanoparticles by Laser Ablation Method and Investigation of their Structural Properties. DOI: https://doi.org/10.21203/rs.3.rs-1409427/v1

Нови, А. А. Применение ультразвука при производстве наноматериалов

[Электронный ресурс] / А. А. Нови // Ультразвуковая техника – Инлаб. –

Режим доступа : http://utinlab.ru/articles/primenenie-ultrazvuka-pri-proizvodstvenanomaterialov (дата обращения: 30.11.2018)

N. Wongpisutpaisan, P. Charoonsuk, N. Vittayakorn, W. Pecharapa, “Sonochemical synthesis and characterization of copper oxide nanoparticles”, Energy Procedia, Vol 9, January 2011, pp. 404-409.

Downloads

Published

2024-03-30

How to Cite

Yarbekov, A. (2024). Synthesis of copper nanoparticles using ultrasound and magnetic field. Acta of Turin Polytechnic University in Tashkent, 14(1), 50–58. Retrieved from https://acta.polito.uz/index.php/journal/article/view/271