PROSPECTS OF APPLICATION OF SONO(CHEMICAL AND ELECTROCHEMICAL) METHODS IN THE SYNTHESIS OF METAL NANOPARTICLES

Authors

  • Abdurasul Yarbekov Turin Polytechnic University in Tashkent

Keywords:

nanoparticles, copper, synthesis, morphology, sonochemistry, sonoelectrochemistry

Abstract

Chemical sonochemical and sonoelectrochemical methods for producing copper nanoparticles are generalized and analyzed. The sonochemical method for the synthesis of CuO nanoparticles is a simple and effective method for obtaining nanoparticles in high yield. The size of nanoparticles varies from 45 to 80 nm depending on the ultrasonic treatment time and calcination temperature. CuO nanoparticles produced by ultrasound in less than 20 minutes produce particles with a size of about 80 nm, while if the reaction is extended to 30 minutes, the resulting particle size is 45 nm. The results will be inversely proportional in the sense that the size will increase after increasing the sonication time to 40 minutes. The morphology of nanoparticles also depends on the pH of the medium. When the pH is set to 8, the morphology appears like leaves, and after increasing the pH to 11, the morphology changes to a clumpy flower.

The sonoelectrochemical method makes it possible to synthesize chemically pure copper powders with unique and stable properties, controlled by the parameters of electrolytic deposition. Cu2O nanoparticles were obtained by pulsed sonoelectrochemistry in a potentiostatic mode. When applying a current density range of 55 to 100 mA cm−2, monodisperse spherical copper nanoparticles with a diameter of 25–60 nm were observed. The work is based on a voltametric study which showed that by applying potentials ranging from -0.65 (for sample A), -0.85 (for sample B) and -1 V/SSE (for sample C) the formation of a mixture can be avoided Cu2O and Cu.

References

Leighton T.G. The Acoustic Bubble. London: Academic Press, 1994. 611 p.

Margulis M.A. Sonochemistry and Cavitation. London: Gordon @ Breach. 1996. 543 p.

Hiller R., Putterman S.J., Barber B.P. Spectrum of synchronous picosecond sonoluminescence // Phys. Rev. Lett., 1992. V. 69. P. 1182–1184.

Aharon Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry 11 [2004] 47–55

M.A.Margulis. Sonochemistry and Cavitation. Gordon and Breach, Luxembourg, 1995

Ultrasound, its Chemical, Physical and Biological Effects. Wiley-VCH, New York, 1988

N. A. Neto, P. M. Oliveira, R. M. Nascimento, C. A. Paskocimas, M. R. D. Bomio, F. V. Motta, “Influence of pH on the morphology and photocatalytic activity of CuO obtained by the sonochemical method using different

surfactants”, Ceramics International, Vol 45, Issue 1, January 2019, pp. 651-658.

N. Wongpisutpaisan, P. Charoonsuk, N. Vittayakorn, W. Pecharapa, “Sonochemical synthesis and characterization of copper oxide nanoparticles”, Energy Procedia, Vol 9, January 2011, pp. 404-409.

N. Silva, S. Ramires, I. Diaz, A. Garcia, N. Hassan, “Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles”, Materials, Vol 12, Issue 5, January 2019, pp. 804.

H. Abbasian, D. Ghanbari, G. Nabiyouni, “Sonochemicalassisted synthesis of copper oxide nanoparticles and its application as humidity sensor”, Journal of nanostructures, Vol 3, Issue 4, December 2013, pp. 429-434.

R. Ranjbar-Karimi, A. Bazmandegan-Shamili, A. Aslani, K. Kaviani, K, “Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles”, Physica B: Condensed Matter, Vol 405, Issue 15, August 2010, pp. 3096-3100.

J. Zhang, J. Wang, Y. Fu, B. Zhang, Z. Xie, “Sonochemistry-synthesized CuO nanoparticles as an anode interfacial material for efficient and stable polymer solar cells”, Rsc Advances, Vol 5, Issue 36, 2015, pp. 28786-28793.

S. Anandan, G. J. Lee, J. J. Wu, “Sonochemical synthesis of CuO nanostructures with different morphology”, Ultrasonics sonochemistry, Vol 19, Issue 3, May 2012, pp. 682-686.

Chigirinets E.E., Roslik I.G., Vnukov A.A. Influence of the electrolysis mode and functional additives in the electrolyte on the properties and surface morphology of copper electrolytic powder particles // Bulletin of NTU "KhPI". - 2009. - No. 21. - P. 15 - 20

Zherebtsov D.A., Galimov D.M., Zagorulko O.V., Frolova E.V., Zakharov V.G., Mikhailov G.G. Selection of conditions for measuring the size of macromolecules by dynamic light scattering // Bulletin of SUrSU. Series: Chemistry. 2015. No. 1. pp. 20-29 (obtaining copper nanopowders)

L.Rodrigues-Sanchez, M.L.Blanko, M.A.Lopez-Quintela. J. Phys. Chem. B, 104, 9683 (2000)

B.Yin, H.Ma, S.Wang, S.Chen. J. Phys. Chem. B, 107, 8898 (2003).

Kumbhat, S. Potentialities of power ultrasound in electrochemistry: An overview. Bull. Electrochem. 2000, 16, 29–32.

Lorimer, J.P.; Mason, T.J.; Plattes, M.; Phull, S.S.; Walton, D.J. Degradation of dye effluent. Pure Appl. Chem. 2001, 73, 1957–1968.

Delplancke, J.L.; Dille, J.; Reisse, J.; Long, G.J.; Mohan, A.; Grandjean, F. Magnetic nanopowders: Ultrasound assisted electrochemical preparation and properties. Chem. Mater . 2000, 12, 946–955.

Compton, R.G.; Eklund, J.C.; Marken, F. Sonoelectrochemical processes. A review. Electroanalysis 1997, 9, 509–522.

Walton, D.J.; Phull, S.S; Chyla, A.; Lorimer, J.P.; Mason, T.J.; Burke, L.D.; Murphy, M.; Compton, R.G.; Eklund, J.C.; Page, S.D. Sonovoltammetry at platinum electrodes: Surface phenomena and mass transport processes. J. Appl. Electrochem. 1995, 25, 1083–1090.

Brett, C. Sonoelectrochemistry. In Piezoelectric Transducers and Applications ; Arnau, A., Ed.; Springer-Verlag: Heidelberg, Berlin, Germany, 2008; Chapter 15, pp. 399–411.

Reisse, J.; Francois, H.; Vandercammen, J.; Fabre, O.; Kirsch-de Mesmaeker, A.; Maerschalk, C.; Delplancke, J.L. Sonoelectrochemistry in aqueous electrolyte: A new type of sonoelectroreactor. Electrochim. Acta 1994, 39, 37–39.

Atobe, M.; Nonaka, T. Ultrasonic Effects on Electroorganic Processes. Electroreduction of Benzaldehydes on Ultrasound-vibrating electrodes. Chem. Lett. 1995, 24, 669–670.

Durant, A.; François, H.; Reisse, J.; Kirsch-Demesmaeker, A. Sonoelectrochemistry: The effects of ultrasound on organic electrochemical reduction. Electrochim. Acta 1996, 41, 277–284.

Jayaraman Theerthagiri. Sonoelectrochemistry for energy and environmental applications. Ultrasonics – Sonochemistry –63., 2020. https://doi.org/10.1016/j.ultsonch.2020.104960.

J.C. Eklund, F. Marken, D.N. Waller, R.G. Compton, Electrochim. Acta 1996,41, 1541.

J. Reisse, H. Francois, J. Vandercammen, 0. Fabre, A. Kirsch.de Mesrnaeker, C. Maerschalk, J.-L. Delplancke, Electrochim. Acta 1994, 39, 37.

R.G. Compton, J.C. Eklund, F. Marken, D.N. Waller, Electrochim. Acta 1996, 41, 315

Reisse, J.; Francois, H.; Vandercammen, J.; Fabre, O.; Kirsch-de Mesmaeker, A.; Maerschalk, C.; Delplancke, J.L. Sonoelectrochemistry in aqueous electrolyte: A new type of sonoelectroreactor. Electrochim. Acta 1994, 39, 37–39.

Durant, A.; Delplancke, J.L.; Winand, R.; Reisse. J. A new procedure for the production of highly reactive metal powders by pulsed sonoelectrochemical reduction. Tetrahedron Lett. 1995, 36, 4257–4260.

Junjie Zhu, Suwen Liu Shape-Controlled Synthesis of Silver Nanoparticles by

Pulse Sonoelectrochemical Methods

Herdman, R.D.; Pearson, T.; Long, E.; Gardner, A. Controlling the hardness of electrodeposited copper coatings by variation of current profile. US Pat. 7329334, 2008.

Haas, I.; Shanmugam, S.; Gedanken, A. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J. Phys. Chem. B 2006, 110, 16947–16952.

Haas, I.; Shanmugam, S.; Gedanken, A. Synthesis of copper dendrite nanostructures by a sonoelectrochemical method. Chem. Eur. J. 2008, 14, 4696–4703.

Mancier, V.; Daltin, A.L.; Leclercq, D. Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry, Ultrason. Sonochem. 2008, 15, 157–163.

J.L. Delplancke, J. Dille, J. Reisse, G.J. Long, A. Mohan, F.

Grandjean, Chem. Mater. 12 [2000] 946–955.

Veronica Sáez * and Timothy J. Mason. Sonoelectrochemical Synthesis of Nanoparticles Molecules 2009, 14, 4284-4299; doi:10.3390/molecules14104284

Zhu, J.; Aruna, S.T.; Koltypin, Y.; Gedanken, A. A novel method for the preparation of lead selenide: Pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem. Mater. 2000, 12, 143–147

Mastai, Y.; Polsky, R.; Koltypin, Y.; Gedanken, A.; Hodes, G. Pulsed sonoelectrochemical synthesis of cadmium selenide nanoparticles. J. Am. Chem. Soc. 1999, 121, 10047–10052.

Haas, I.; Shanmugam, S.; Gedanken, A. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J. Phys. Chem. B 2006, 110, 16947–16952.

Jiang, L.P.; Wang, A.N.; Zhao, Y.; Zhang, J.R.; Zhu, J.J. A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg. Chem. Commun. 2004, 7, 506–509.

Qiu, X.F.; Xu, J.Z.; Zhu, J.M.; Zhu, J.J.; Xu, S.; Chen, H.Y. Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J. Mater. Res. 2003, 18, 1399–1404.

Shen, Q.; Jiang, L.; Zhang, H.; Min, Q.; Hou, W.; Zhu, J.J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C 2008, 112, 16385–16392.

K. S. Suslick, G. J. Price, Annu. Rev. Mater. Sci. 1999, 29, 295.

G. Yang, J.J. Zhu, Sonoelectrochemical synthesis and characterization of nanomaterials, in: M. Ashokkumar [Ed.], Handbook of Ultrasonics and Sonochemistry, Springer, Singapore, 2016, , https://doi.org/10.1007/978-981-287-470-2_11-2.

T.J. Mason, V.S. Bernal, An Introduction to Sonoelectrochemistry, John Wiley & Sons Ltd., 2012, pp. 21–44.

Published

2025-07-14

How to Cite

Yarbekov, A. (2025). PROSPECTS OF APPLICATION OF SONO(CHEMICAL AND ELECTROCHEMICAL) METHODS IN THE SYNTHESIS OF METAL NANOPARTICLES. Acta of Turin Polytechnic University in Tashkent, 15(1), 56–64. Retrieved from https://acta.polito.uz/index.php/journal/article/view/294